APPLICATION OF CONTINUOUS WAVELET TRANSFORM TO ANALYSIS OF INTERMITTENT BEHAVIOR


Cite this article as:

Koronovskii A. A., Minyukhin I. М., Tyshchenko А. А., Hramov A. E., Midzyanovskaya . S., Sitnikova Е. Y. APPLICATION OF CONTINUOUS WAVELET TRANSFORM TO ANALYSIS OF INTERMITTENT BEHAVIOR. Izvestiya VUZ, Applied Nonlinear Dynamics, 2007, vol. 15, iss. 4, pp. 34-54 DOI: 10.18500/0869-6632-2007-15-4-​34-54


Effective method of signals analysis based on the continuous wavelet transform is proposed in this paper. Application of this method to estimation of mean value both of laminar and turbulent phase durations corresponding to different types of intermittent behavior is considered including analysis of time series produced by living systems. It is shown that the proposed method is stable to noise and fluctuations distorting the initial time series.

 

Key words: 
-
DOI: 
10.18500/0869-6632-2007-15-4-​34-54
Literature

1. Берже П., Помо И., Видаль К. Порядок в хаосе. М.: Мир, 1991.

2. Manneville P., Pomeau Yv. Different ways to turbulence in dissipative dynamical systems // Physica D. 1980. Vol. 1(2). P. 167.

3. Rosenblum M.G., Pikovsky A.S., Kurths J. From phase to lag synchronization in coupled chaotic oscillators // Phys. Rev. Lett. 1997. Vol. 78(22). P. 4193.

4. Boccaletti S., Valladares D.L. Characterization of intermittent lag synchronization // Phys. Rev. E. 2000. Vol. 62(5). P. 7497.

5. Hramov A.E., Koronovskii A.A. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators // Europhysics Letters. 2005. Vol. 70(2). P. 169.

6. Короновский А.А., Кузнецова Г.Д., Мидзяновcкая И.С., Ситникова Е.Ю., Трубецков Д.И., Храмов А.Е. Закономерности перемежающегося поведения в спонтанной неконвульсивной судорожной активности у крыс // Доклады Академии Наук, 2006.

7. Berge P., Pomeau Y., Vidal Ch. L’Ordre Dans Le Chaos, 1988.

8. Dubois M., Rubio M., Berge P.  ́ Experimental evidence of intermittencies associated with a subharmonic bifurcation // Phys. Rev. Lett. 1983. Vol. 51. P. 1446.

9. Platt N., Spiegel E.A., Tresser C. On–off intermittency: a mechanism for bursting // Phys. Rev. Lett. 1993. Vol. 70(3). P. 279.

10. Pikovsky A., Osipov G., Rosenblum M., Zaks M., Kurths J. Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization // Phys. Rev. Lett. 1997. 79(1). P. 47.

11. Zhan M., Wei G.W., Lai C.H. Transition from intermittency to periodicity in lag synchronization in coupled Rossler oscillators // Phys. Rev. E. 2002. Vol. 65(3).  036202.

12. Короновский А.А., Храмов А.Е. Об эффективном анализе перехода к хаосу через перемежаемость с помощью вейвлетного преобразования // Письма в ЖТФ. 2001. Т. 27(1). С. 3.

13. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения // М.: Физматлит, 2003.

14. Daubechies I. Ten lectures on wavelets // SIAM, 1992.

15. Torresani B. Continuous wavelet transform // Paris: Savoire, 1995.

16. Короновский А.А., Тыщенко А.А., Храмов А.Е. Исследование распределения турбулентных фаз при разрушении синхронизации с запаздыванием // Письма в ЖТФ. 2005. Т. 31(21).

17. Hramov A.E., Koronovskii A.A. An approach to chaotic synchronization // Chaos. 2004. Vol. 14(3). P. 603.

18. Шустер Г. Детерминированный хаос. М.: Мир, 1988.

19. Pecora L.M., Carroll T.L. Driving systems with chaotic signals // Phys. Rev. A. 1991. Vol. 44(4). P. 2374.

20. Murali K., Lakshmanan M. Drive-response scenario of chaos syncronization in identical nonlinear systems // Phys. Rev. E. 1994. Vol. 49(6). P. 4882.

21. Heagy J.F., Platt N., Hammel S.M. Characterization of on–off intermittency // Phys. Rev. E. 1994. Vol. 49(2). P. 1140.

22. Короновский А.А., Москаленко О.И., Храмов А.Е. Новый тип универсальности при хаотической синхронизации динамических систем // Письма в ЖЭТФ. 2004. Т. 80(1). С. 25.

23. Hramov A.E., Koronovskii A.A., Kurovskaya M.K., Moskalenko O.I. Synchronization of spectral components and its regularities in chaotic dynamical systems. Phys. Rev. E. 2005. Vol. 71(5). P 056204.

24. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.T. Numerical Recipes // Cambridge University Press, Cambridge, 1997.

25. Van Luijtelaar E.L., Coenen A.M. Two types of electrocortical paroxysms in an inbred strain of rats // Neurosci Lett. 1986. Vol. 70(3). P. 393.

26. Мидзяновская И.С. Два типа разрядов «пик–волна» на электроэнцефалограмме крыс линии wag/rij, генетической модели absence эпилепсии // Журн. высш. нерв. деят. 1999. Т. 49(5). С. 855.

27. Luijtelaar E.L, Coenen A.M. Circadian rhythmicity in absence epilepsy in rats // Epilepsy Res. 1998. Vol. 2(5). P. 331.

28. Tass P.A. et al. Synchronization tomography: A method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography. Phys. Rev. Lett. 2003. Vol. 90(8). P 088101.

29. Hramov A.E., Koronovskii A.A., Ponomarenko V.I., Prokhorov M.D. Detecting synchronization of self-sustained oscillators by external driving with varying frequency // Phys. Rev. E. 2006. Vol. 73. P. 026208.

30. Короновский А.А., Пономаренко В.И., Прохоров М.Д., Храмов А.Е. Изучение синхронизации автоколебаний по унивариантным данным при изменении частоты внешнего воздействия с использованием вейвлетного анализа // Письма в ЖТФ. 2006. Т. 32(11). С. 81.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Короновский-IzvVUZ_AND-15-4-34,
author = {A. A. Koronovskii and I. М. Minyukhin and А. А. Tyshchenko and A. E. Hramov and I. S. Midzyanovskaya and Е. Yu. Sitnikova},
title = {APPLICATION OF CONTINUOUS WAVELET TRANSFORM TO ANALYSIS OF INTERMITTENT BEHAVIOR},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {4},
url = {http://andjournal.sgu.ru/en/articles/application-of-continuous-wavelet-transform-to-analysis-of-intermittent-behavior},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-4-​34-54},pages = {34--54},issn = {0869-6632},
keywords = {-},
abstract = {Effective method of signals analysis based on the continuous wavelet transform is proposed in this paper. Application of this method to estimation of mean value both of laminar and turbulent phase durations corresponding to different types of intermittent behavior is considered including analysis of time series produced by living systems. It is shown that the proposed method is stable to noise and fluctuations distorting the initial time series.   }}