ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Postnov D. D., Sosnovtseva O. V., Postnov D. E. Autonomous and nonautonomous dynamics of functional model of serotonergic neuron. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 26-44. DOI: 10.18500/0869-6632-2011-19-3-26-44

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 180)
Language: 
Russian
Article type: 
Article
UDC: 
577.31

Autonomous and nonautonomous dynamics of functional model of serotonergic neuron

Autors: 
Postnov Dmitrij Dmitrievich, Saratov State University
Sosnovtseva Olga Vladimirovna, Danmarks Tekniske Universitet
Postnov Dmitry E, Saratov State University
Abstract: 

Serotonin is a key modulator of neuronal activity both at the system level and at the level of local (short-range) interactions. However, in contrast to the synaptically connected neuron ensembles, there are much less qualitative models that describe the serotonin-controlled neural circuits. In this paper, we propose a relatively simple model of serotonergic (serotonin-releasing and serotonin-sensitive) neuron. It is shown that specific features of both autonomous and nonautonomous dynamics of such model are considerably dependent on a weak depolarizing voltage-independent current of neuron and on the presence of serotonin auto-receptors. Our work is aimed on development of «computational image» for basic serotonin-controlled neural circuits, which role for basic neuronal features plays the famous FitzHugh–Nagumo model. 

Reference: 
  1. Kravitz EA. Serotonin and aggression: Insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J. Comp. Physiol. A. 2000;186(3):221–238. DOI: 10.1007/s003590050423.
  2. Lesch KP and Merschdorf U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law. 2000;18(5):581–604. DOI: 10.1002/1099-0798(200010)18:5<581::AID-BSL411>3.0.CO;2-L.
  3. Sakurai A and Katz PS. Spike timing-dependent serotonergic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. J. Neurosci. 2003;23(34):10745–10755. DOI: 10.1523/jneurosci.23-34-10745.2003.
  4. Satterlie RA and Norekian TP. Modulation of swimming speed in the pteropod mollusc, Clione limacina: Role of a compartmental serotonergic system. Invert. Neurosci. 1996;2(3):157–165. DOI: 10.1007/bf02214171.
  5. Nusbaum MP, Friesen WO, Kristian Jr WB, and Pierce RA. Neural mechanisms generating the leech swimming rhythm. J. Comp. Physiol. A. 1987;161(3):355–366. DOI: 10.1007/bf00603961.
  6. Ursin R. Serotonin and sleep. Sleep Med. Rev. 2002;6(1):55–69. DOI: 10.1053/smrv.2001.0174.
  7. Hull EM, Lorrain DS, Du J, Matuszewich L, Lumley LA, Putnam SK, and Moses J. Hormone-neurotransmitter interactions in the control of sexual behavior. Behav. Brain Res. 1999;105(1):105–116. DOI: 10.1016/s0166-4328(99)00086-8.
  8. Graeff FG, Guimaraes FS, De Andrade TG, and Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 1996;54(1):129–141. DOI: 10.1016/0091-3057(95)02135-3.
  9. Jobe PC, Dailey JW, and Wernicke JF. A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Crit. Rev. Neurobiol. 1999;13(4):317–356. DOI: 10.1615/critrevneurobiol.v13.i4.10.
  10. Whitaker-Azmitia PM and Peroutka SJ. The Neuropharmacology of Serotonin. New York: Academic Sciences; 1990. 718 p.
  11. Pineyro G and Blier P. Autoregulation of serotonin neurons: Role in antidepressant drug action. Pharmacol. Rev. 1999;51(3):533–591.
  12. Stahl SM, Grady MM, and Briley M. SNRIs: their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr. 2005;10(9):732–747. DOI: 10.1017/s1092852900019726.
  13. Johnson KW, Phebus LA, and Cohen ML. Serotonin in migraine: theories, animal models and emerging therapies. Prog. Drug Res. 1998;51:219–244. DOI: 10.1007/978-3-0348-8845-5_6.
  14. Anderson IM. Selective serotonin reuptake inhibitors versus tricyclic antidepressants: a meta-analysis of efficacy and tolerability. J. Affect. Disord. 2000;58(1):19–36. DOI: 10.1016/s0165-0327(99)00092-0.
  15. Kish SJ, Furukawa Y, Ang L, Vorce SP and Kalasinsky KS. Striatal serotonin is depleted in brain of a human MDMA (Ecstasy) user. Neurology. 2000;55(2):294–296. DOI: 10.1212/wnl.55.2.294.
  16. Hornung JP. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 2003;26(4):331–343. DOI: 10.1016/j.jchemneu.2003.10.002.
  17. Schwartz JH and Shkolnik LJ. The giant serotonergic neuron of Aplysia: A multi-targeted nerve cell. J. Neurosci. 1981;1(6):606–619. DOI: 10.1523/jneurosci.01-06-00606.1981.
  18. Kristian MB and Nusbaum Jr MP. The dual role of serotonin in leech swimming. J. Physiol. 1983;78(8):743–747.
  19. Sahley CL. What we have learned from the study of learning of the leech. J. Neurobiol. 1995;27(3):434–445. DOI: 10.1002/neu.480270314.
  20. Kristan Jr WB, Calabrese R, Friesen WO. Neuronal control of leech behavior. Prog. Neurobiol. 2005;76(5):279–327. DOI: 10.1016/j.pneurobio.2005.09.004.
  21. Roth BL. The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics. Humana Press; 2006. 618 p. DOI: 10.1007/978-1-59745-080-5.
  22. Marder E, Calabrese RL. Principles of rhythmic motor pattern generation. Physiol. Rev. 1996;76(3):687–717. DOI: 10.1152/physrev.1996.76.3.687.
  23. Special Issue on Computational Models of Neuromodulation. Neural Networks. 2002;15.
  24. Baxter DA, Canavier CC, Clark Jr JW, and Byrne JH. Computational model of the serotonergic modulation of sensory neurons in Aplysia. J. Neurophysiol. 1999;82(6):2914–2935. DOI: 10.1152/jn.1999.82.6.2914.
  25. Fellous JM and Linster C. Computational models of neuromodulation. Neural Computation. 1998;10(4):771–805. DOI: 10.1162/089976698300017476.
  26. FitzHugh RA. Impulses and physiological states in theoretical models of nerve. Biophys. J. 1961;1(6):445–466. DOI: 10.1016/S0006-3495(61)86902-6.
  27. Keener J, and Sneyd J. Mathematical Physiology. New York: Springer; 1998. 547 p. DOI: 10.1007/978-0-387-75847-3.
  28. Lindner B, Garcia-Ojalvo J, Neiman A and Schimansky-Geier L. Effects of noise in excitable systems. Phys. Rep. 2004;392(6):321–424. DOI: 10.1016/j.physrep.2003.10.015.
  29. Kasatkin DV. The phenomenon of self-referential phase reset in ensembles of interacting FitzHugh–Nagumo neurons. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(1):79–92 (in Russian). DOI: 10.18500/0869-6632-2009-17-1-79-92.
  30. Nekorkin VI, Artyukhin DV. Regular and chaotic oscillations in the system of two interconnected, dynamically different FitzHugh-Nagumo elements. Izvestiya VUZ. Applied Nonlinear Dynamics. 2001;9(6):45–68 (in Russian).
  31. Acebron JA, Bulsara AR, Rappel WJ. Dynamics of globally connected neural elements FitzHugh-Nagumo in the presence of noise. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(3):110 (in Russian).
  32. Krjukov AK, Osipov GV, Polovinkin AV. Variety of synchronous regimes in ensembles of nonidentical oscillators: chain and lattice. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(2):29–36 (in Russian). DOI: 10.18500/0869-6632-2009-17-2-29-36.
  33. Binczak S, Jacquir S, Bilbault JM, Kazantsev VB and Nekorkin VI. Experimental study of electrical FitzHugh–Nagumo neurons with modified excitability. Neural Networks. 2006;19(5):684–693. DOI: 10.1016/j.neunet.2005.07.011.
  34. Aghajanian GK and Vandermaelen C.P. Intracellular recordings from serotonergic dorsal raphe neurons: Pacemaker potentials and the effect of LSD. Brain Res. 1982;238(2):463–469. DOI: 10.1016/0006-8993(82)90124-X.
  35. Mnie-Filalia O, El Mansaria M, Espana A, Sanchez C, and Haddjeri N. Allosteric modulation of the effects of the 5-HT reuptake inhibitor escitalopram on the rat hippocampal synaptic plasticity. Neuroscience Letters. 2006;395(1):23–27. DOI: 10.1016/j.neulet.2005.10.044.
  36. Wang RY and Aghajanian GK. Correlative firing patterns of serotonergic neurons in rat dorsal raphe nucleus. J. Neurosci. 1982;2(1):11–16. DOI: 10.1523/jneurosci.02-01-00011.1982.
  37. Berry MS and Pentreath VW. Properties of a symmetric pair of serotonin-containing neurons in the cerebral ganglia of Planorbis. J. Exp. Biol. 1976;65(2):361–380.
  38. Moss BL, Fuller AD, Sahley CL, and Burrell BD. Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech. J. Neurophysiol. 2005;94(4):2575–2589. DOI: 10.1152/jn.00322.2005.
  39. De Miguel FE and Trueta C. Synaptic and extrasynaptic secretion of serotonin. Cell. Mol. Neurobiol. 2005;25(2):297–312. DOI: 10.1007/s10571-005-3061-z.
  40. Norekian TP and Satterlie RA. Serotonergic neural system not only activates swimming but also inhibits competing neural centers in a pteropod mollusc. Amer. Zool. 2001;41(4):993–1000. DOI: 10.1093/icb/41.4.993.
  41. Zhang H, Wainwright M, Byrne JH, and Cleary LJ. Quantitation of contacts among sensory, motor, and serotonergic neurons in the pedal ganglion of Aplysia. Learning and Memory. 2003;10(5):387–393. DOI: 10.1101/lm.63903.
  42. Izhikevich EM. Resonate-and-fire neurons. Neural Networks J. 2001;14(6–7):883–894. DOI: 10.1016/S0893-6080(01)00078-8.
  43. Izhikevich EM. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press; 2007. 464 p.
  44. Rinzel J and Ermentrout GB. Analysis of neural excitability and oscillations. In: Koch C, Segel I, editors. Methods in Neuronal Modeling. Cambridge: MIT Press; 1989. P. 135–169.
  45. Hodgkin AL. The local electric changes associated with repetitive action in a nonmedulated axon. J. Physiol. 1948;107(2):165–181. DOI: 10.1113/jphysiol.1948.sp004260.
  46. Izhikevich EM. Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos. 2000;10(6):1171–1266. DOI: 10.1142/S0218127400000840.
  47. Morris C and Lecar H. Voltage oscillations in the barnacle giant muscle fibre. Biophys. J. 1981;35(1):193–213. DOI: 10.1016/s0006-3495(81)84782-0.
  48. Kopell N, Ermentrout GB, Whittington MA, and Traub RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Nat. Acad. Sci. USA. 2000;97(4):1867–1872. DOI: 10.1073/pnas.97.4.1867.
  49. Hamon M, Gerschenfeld HM, and Paupardin-Tritsch D. Release of endogenous serotonin from two identified serotonin-containing neurones and the physiological role of serotonin re-uptake. J. Physiol. 1978;274:265–278. DOI: 10.1113/jphysiol.1978.sp012146.
  50. Kazantsev VB, Nekorkin I, Velarde MG. A model of a neuron with oscillatory activity below the excitation threshold. Radiophys. Quantum Electron. 1998;41(12):1101–1109. DOI: 10.1007/BF02676511.
  51. Anishchenko VS, Astakhov VV, Vadivasova TE. Regular and Chaotic Auto-Oscillations. Synchronization and Influence of Fluctuations. Textbook-Monograph. Moscow: «Intellekt»; 2009. 312 p. (in Russian).
  52. Pikovsky A and Kurths J. Coherence resonance in a noise-driven excitable systems. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 0.1103/PhysRevLett.78.775.
  53. Han SK, Yim TG, Postnov DE and Sosnovtseva OV. Interacting coherence resonance oscillators. Phys. Rev. Lett. 1999;83(9):1771–1774. DOI: 10.1103/PhysRevLett.83.1771.
  54. Ranganathan R, Cannon SC, and Horvitz HR. MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature. 2000;408(6811):470–475. DOI: 10.1038/35044083.
  55. Ali DW, Catarsi S, and Drapeau P. Ionotropic and metabotropic activation of a neuronal chloride channel by serotonin and dopamine in the leech Hirudo medicinalis. J. Physiol. 1998;509(1):211–219. DOI: 10.1111/j.1469-7793.1998.211bo.x.
Received: 
09.12.2010
Accepted: 
09.12.2010
Published: 
29.07.2011
Short text (in English):
(downloads: 80)