ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Adilova A. B., Kuznecov A. P., Savin A. V. Complex dynamics in the system of two coupled discrete Rossler oscillators. Izvestiya VUZ, 2013, vol. 21, iss. 5, pp. 108-119. DOI: https://doi.org/10.18500/0869-6632-2013-21-5-108-119

Language: 
Russian

Complex dynamics in the system of two coupled discrete Rossler oscillators

Autors: 
Adilova Asel Bauyrzhanovna, Saratov State University
Kuznecov Aleksandr Petrovich, Saratov State University
Savin Aleksej Vladimirovich, Saratov State University
Abstract: 

We considered the discrete map with quasi-periodic dynamics in the wide band of the parameters and investigated the structure of the parameter plane of two coupled maps. We revealed the doublings of 3D-tori, the systems of 2D-tori and synchronization tongues and the resonance web. Also we revealed the attractors with complex structure and the largest Lyapunov exponent close to zero.

DOI: 
10.18500/0869-6632-2013-21-5-108-119
References: 

1. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. 2. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.; Ижевск: РХД, 2000. 3. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация – фундаментальное нелинейное явления. М.: Техносфера, 2003. 4. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Стрелкова Г.И. Синхронизация регулярных, хаотических и стохастических колебаний. М.; Ижевск: ИКИ, 2008. 5. Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987. 6. Baesens C., Guckenheimer J., Kim S., MacKay R.S. Three coupled oscillators: mode locking, global bifurcations and toroidal chaos// Physica D. 1991. Vol. 47. P. 387. 7. Anishchenko V., Astakhov S., Vadivasova T. Phase dynamics of two coupled oscillators under external periodic force // Europhysics Letters. 2009. Vol. 86. P. 30003. 8. Кузнецов А.П., Сатаев И.Р., Тюрюкина Л.В. Синхронизация квазипериодических колебаний связанных фазовых осцилляторов // Письма в ЖТФ. 2010. Т. 36, вып. 10. С. 73. 9. Анищенко В.С., Николаев С.М. Синхронизация квазипериодических колебаний с двумя частотами // Изв. вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 2. С. 69. 10. Кузнецов А.П., Поздняков М.В., Седова Ю.В. Связанные универсальные отображения с бифуркацией Неймарка- Сакера // Нелинейная динамика. 2012. Т. 8, No 3. С. 473. 11. Nishiuchi Y., Ueta T., Kawakami H. Stable torus and its bifurcation phenomena in a simple three-dimensional autonomous circuit // Chaos, Solutions & Fractals. 2006. Vol. 27, No 4. P. 941. 12. Anishchenko V., Nikolaev S., Kurths J. Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus // CHAOS. 2008. Vol. 18. P. 037123. 13. Кузнецов А.П., Кузнецов С.П., Станкевич Н.В. Автономный генератор квазипериодических колебаний// Изв. вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 2. С. 51. 14. Заславский Г.М. Физика хаоса в гамильтоновых системах. М.; Ижевск: ИКИ, 2004. 15. Морозов А.Д. Резонансы, циклы и хаос в квазиконсервативных системах. М.; Ижевск: ИКИ, 2005. 16. Кузнецов А.П., Савин А.В., Седова Ю.В. Бифуркация Богданова–Такенса: от непрерывной к дискретной модели // Изв. вузов. Прикладная нелинейная динамика. 2009. Т. 17, No 6. С. 139. 17. Rossler O.E.  ? An equation for continuous chaos // Phys. Lett. 1976. Vol. A57, No 5. P. 397,398. 18. Кузнецов А.П., Паксютов В.И. Динамика двух неидентичных связанных автоколебательных систем с удвоениями периода на примере осцилляторов Ресслера//Изв. вузов. Прикладная нелинейная динамика. 2006. Т. 14, No 2. С. 3. 19. Froeschle C., Lega E., Guzzo M.  ? Analysis of the chaotic behaviour of orbits diffusing along the Arnold web // In book «Periodic, Quasi-Periodic and Chaotic Motions in Celestial Mechanics: Theory and Applications» 2006. Part 2. P. 141. 20. Guzzo M., Lega E., Froeschle C.  ? Diffusion and stability in perturbed non-convex integrable systems //Nonlinearity. 2006. Vol. 19, No 5. P. 1049. 21. Honjo S., Kaneko K. Is Arnold diffusion relevant to global diffusion?http://arxiv.org/abs/nlin/0307050. 22. Vitolo R., Broer H., Simу C. Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms // Nonlinearity. 2010. Vol. 23. P. 1919.

Short text (in English):