ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shchyogolev S. Y. Current views of evolution: on the role of horizontal gene transfer. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 4, pp. 34-51. DOI: 10.18500/0869-6632-2013-21-4-34-51

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 380)
Language: 
Russian
Article type: 
Other
UDC: 
573.8:579.23

Current views of evolution: on the role of horizontal gene transfer

Autors: 
Shchyogolev Sergej Yurevich, Russian Academy of Sciences' Institute of Biochemistry and Physiology of Plants and Microorganisms
Abstract: 

This article is an extended summary of a lecture given to undergraduate and postgraduate students of Saratov State University’s Faculty of Nonlinear Processes at the School-cum-Conference «Nonlinear Days for the Young in Saratov – 2012». The article presents a brief review of the literature reflecting the foundations of the modern theory of biological evolution. Among the vast diversity of papers reporting various approaches to the problem (including a number of seminal studies on the self-organization of open systems) and analyzing experimental (sometimes quite contradictory) data, preference is given to studies by Russian and foreign authors that are believed by the lecturer to be of the most interest to microbiologists. Special emphasis is placed on the role of interspecies (horizontal) exchange of genetic information; the significance of such exchange for the evolution, emergence, and functioning of a wide range of endo- and ectosymbiotic plantmicrobe systems; and genetic engineering. 

Reference: 
  1. Darwin C. Origin of species by natural selection or preservation of favorable races in the struggle for life. St. Petersburg: Nauka; 2001. 568 p. (In Russian).
  2. Klimontovich YuL. Introduction to physics of open systems. ISSEP. 1996;8(109–116).
  3. Woese CR. Interpreting the universal phylogenetic tree. PNAS. 2000;97(15):8392–8396. DOI: 10.1073/pnas.97.15.8392.
  4. Available from: http://www.zo.utexas.edu/faculty/antisense/downloadfilestol.html.
  5. Klimontovich YuL. Turbulent movement and chaos structure: A new approach to the statistical theory of open systems. Synergies: from the past to the future. Moscow: URSS. 2010. 322 p. (In Russian).
  6. Rozanov AJ. When was life on Earth? Vestnik RAS. 2010;80(5–6):533–541.
  7. Hoover RB. Fossils of cyanobacteria in CI1 carbonaceous meteorites: implications to life on comets, Europa and Enceladus. J. Cosmol. 2011;13:3811–3848.
  8. Sharov AA. Genetic gradualism and the extraterrestrial origin of life. J. Cosmol. 2010;5:833–842.
  9. Joseph R, Wickramasinghe NC. Genetics indicates extraterrestrial origins for life: the first gene. Did life begin following the big bang? J. Cosmol. 2011;16(29):6832.
  10. Spirin AS. When, where, and under what conditions could the RNA world arise and evolve? Paleontological Journal. 2007;5:11–19.
  11. Snytnikov VN. Abiogenic synthesis of prebiotic matter for the Earth's biosphere as a stage of self-organization on an astrophysical and paleontological time scale. Paleontological Journal. 2007;41(5):473–480. DOI: 10.1134/S0031030107050012.
  12. Available from: http://myxo.css.msu.edu/index.html.
  13. Lenski RE, Travisano M. Dynamics of adaptation and diversification: a 10000-generation experiment with bacterial populations. PNAS. 1994;91(15):6808–6814. DOI:10.1073/pnas.91.15.6808.
  14. Blount ZD, Borland CZ, Lenski RE. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. PNAS. 2008;105(23):7899–7906. DOI: 10.1073/pnas.0803151105.
  15. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature. 2009;461(7268):1243–1247. DOI: 10.1038/nature08480.
  16. Dawkins R. The greatest show on earth the evidence for evolution. Moscow: Astrel CORPUS. 2012. 528 p.(In Russian).
  17. Chetverikov SS. About some aspects of the evolutionary process from the point of view of modern genetics. The Journal of Experimental Biology. 1926;2(1):3–54.
  18. Markov A. The birth of complexity. Evolutionary biology today: unexpected discoveries and new questions. Moscow: Astrel CORPUS, 2010. 528 p. (In Russian).
  19. Behe MJ. Darwin’s black box. The biochemical challenge to Evolution. New-York: Simon & Shuster; 1998. 329 p.
  20. Behe MJ. Experimental evolution, loss-of-function mutations and the «first rule of adaptive evolution». Quart. Rev. Biol. 2010;85(4):419–445. DOI: 10.1086/656902.
  21. Zavarzin GA. Not Darvin region of evolution. Herald of the Russian Academy of Sciences. 2000;70(5):403–411.
  22. Zavarzin GA. Does evolution make the essence of biology? Herald of the Russian Academy of Sciences. 2006;76(3):292-302. DOI: 10.1134/S101933160603004X.
  23. Galimov EM. The phenomenon of life: between balance and nonlinearity. Origin and principles of evolution.Moscow: URSS; 2006. 256 p. (In Russian).
  24. Tchaikovsky YuV. Life development science. Experience of evolution theory. Moscow: KMK; 2006. 712 p. (In Russian).
  25. Tchaikovsky YuV. An active connected world. Experience in the theory of life evolution. Moscow: KMK. 2008. 726 p. (In Russian).
  26. Meyen SV. The problem of the direction of evolution. Results of science and technology. Vertebrate zoology. Vol. 7. Moscow: VINITI; 1975. 66–117 p.
  27. Tahtajyan AL. Facets of evolution. Articles on the theory of evolution, 1943-2006. St. Petersburg: Nauka; 2007. 326 p. (In Russian).
  28. Tahtajyan AL. Darwin and the modern theory of evolution. Charles Darwin. Origin of species by natural selection. St. Petersburg: Nauka; 2001. 568 p. (In Russian).
  29. Ochiai K, Yamanaka T, Kimura K, Sawada O. Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains (in Japanese). Hihon Iji Shimpor. 1959;1861:34–46.
  30. Syvanen M. Cross-species gene transfer; implications for a new theory of evolution. J. Theor. Biol. 1985;112(2):333–343. DOI: 10.1016/s0022-5193(85)80291-5.
  31. Shestakov SV. On the early biological evolution from the viewpoint of genomics. Paleontological Journal. 2003;37(6):609-616.
  32. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell. 1977;11(2):263–271. DOI: 10.1016/0092-8674(77)90043-5.
  33. Chumakov MI, Moiseeva EM. Technologies of Agrobacterium plant transformation In planta. Applied Biochemistry and Microbiology. 2012;48(8):657–666. DOI: 10.1134/S0003683812080017.
  34. Dubey G, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell. 2011;144(4):590–600. DOI: 10.1016/j.cell.2011.01.015.
  35. Doolittle WF. Uprooting the tree of life. Scientific American. 2000;282(2):90–95. DOI:10.1038/SCIENTIFICAMERICAN0200-90.
  36. Markov AB, Kulikov AM. Origin of Eukaryota: Conclusions based on the analysis of protein homologies in the three superkingdoms. Paleontological Journal. 2005;39(4):345–357.
  37. Doolittle WF. Phylogenetic classification and the universal tree. Science. 1999;284(5423):2124–2129. DOI: 10.1126/science.284.5423.2124.
  38. Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. PNAS. 2008;105(29):10039–10044. DOI: 10.1073/pnas.0800679105.
  39. Brown TA. Genomes. Moscow - Izhevsk: ICS; 2011. 944 p. (In Russian).
  40. Treangen TJ, Rocha EPC. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genetics. 2011;7(1).e1001284. DOI: 10.1371/journal.pgen.1001284.
  41. Tikhonovich IA, Provorov NA. Symbioses of plants and microorganisms: molecular genetics of agrosystems of the future. St. Petersburg: SPBU Publishing; 2009. 209 p. (In Russian).
  42. Kaneko T, Minamisawa K, Isawa T. et al. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res. 2010;17(1):37–50. DOI: 10.1093/dnares/dsp026.
  43. Wisniewski-Dye F., Borziak K., Khalsa-Moyers G. et al. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genetics. 2011;7(12):e1002430. DOI: 10.1371/journal.pgen.1002430.
  44. Katsy EI. Plasmid plasticity in plant-associated bacteria of the genus Azospirillum. In: Bacteria in agrobiology: plant growth responses. Ed. Maheshwari DK. Berlin: Springer; 2011. 139–157 p.
  45. Markov A. Human evolution. Monkeys, bones and genes. Moscow: Astrel CORPUS; 2011. 387 p. (In Russian).
  46. Markov A. Human evolution. Monkeys, neurons and soul. Moscow: Astrel CORPUS; 2011. 550 p. (In Russian).
  47. Dawkins R. Extended phenotype: long arm of the gene. Moscow: Astrel CORPUS; 2010. 509 p. (In Russian).
  48. Dobzhansky F. Genetics and the origin of species. Izhevsk: R&C Dynamics; 2010. 383 p. (In Russian).
Received: 
22.02.2013
Accepted: 
22.02.2013
Published: 
30.11.2013
Short text (in English):
(downloads: 67)