ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Rjabinina M. V., Melnikov L. A. Dynamics of probability amplitudes in hydrogen-like atoms under the action of strong variable electric field of electromagnetic wave accounting transitions to continuum. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 1, pp. 99-114. DOI: 10.18500/0869-6632-2008-16-1-99-114

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 141)
Language: 
Russian
Article type: 
Article
UDC: 
539.186.22

Dynamics of probability amplitudes in hydrogen-like atoms under the action of strong variable electric field of electromagnetic wave accounting transitions to continuum

Autors: 
Rjabinina Marija Viktorovna, Saratov State University
Melnikov Leonid Arkadevich, Yuri Gagarin State Technical University of Saratov
Abstract: 

The dynamics of populations of 4s and 3p states in hydrogen atom is investigated under the action of ultra high laser single frequency linear-polarized pulse at one-, twoand three-photon resonance and at large detuning out of frame of perturbation theory and rotating wave approximation. It was shown the existence of low frequency modulation of optical oscillations,which frequency becomes zero at some values of laser field amplitude. For the transition 3s ↔ 2p the population dynamics of discrete states 3s and 2p is investigated, and also of the states in continuum which are bounded with the state 3s via optical transition. Coherent-like oscillations of the population of the states in continuum are demonstrated.

Key words: 
Reference: 
  1. Wolf A. Laser-stimulated formation and stabilization of antihydrogen atoms. Hyperfine Interact. 1993;76(1–4):189–201.
  2. Borneis S, Bosch F, Engel T, Jung M, et al. Laser-stimulated two-step recombination of highly charged ions and electrons in a storage ring. Phys. Rev. Lett. 1994;72(2):207–209. DOI: 10.1103/PhysRevLett.72.207.
  3. Schramm U, Wolf A, Scheussler T, Habs D, Schwalm D, Uwira O, Linkemann J and Mueller A. Laser-induced electron–ion recombination used to study enhanced spontaneous recombination during electron cooling. Hyperfine Interactions. 1997;108(1–3):273–281. DOI: 10.1023/A:1012671031466.
  4. Schiibler T, Schramm U, Grieser M, Habs D, Rider T, Schwalm D, Wolf A. Laser induced two-step recombination for the study of Rydberg states in highly charged ions. Nuclear Instruments and Methods in Physics Research B. 1995;98(1–4):146–149. DOI: 10.1016/0168-583X(95)00093-3.
  5. Asp S, Schucha R, Dewitt DR, Biedermann C, Gao H, Zong W, Andler G, Justiniano E. Laser-induced recombination of D+. Nuclear Instruments and Methods in Physics Research B. 1996;117(1–2):31–37. DOI: 10.1016/0168-583X(96)00288-1.
  6. Ritchie B. Laser probe of the atomic ionization continuum: Stimulated recombination into an excited state. Phys. Rev. A. 1984;30(4):1849–1854. DOI: 10.1103/PhysRevA.30.1849.
  7. Leone C, Bivona S, Burlon R, and Ferrante G. Strong-field and plasma aspects of multiphoton radiative recombination. Phys. Rev. A. 2002;66(5):051403. DOI: 10.1103/PhysRevA.66.051403.
  8. Fill E. Gain on free-bound transitions by stimulated radiative recombination. Phys. Rev. Lett. 1986;56(16):1687–1690. DOI: 10.1103/PhysRevLett.56.1687.
  9. Schlusser T, Schramm U, Ruter T, Broude C et al. Laser-stimulated recombination spectroscopy for the study of long-range interactions in highly charged Rydberg ions. Phys. Rev. Lett. 1995;75(5):802–805. DOI: 10.1103/PhysRevLett.75.802.
  10. Wolf A, Gwinner G, Linkemann J, Saghiri AA et al. Recombination in electron coolers. Nuclear Instruments and Methods in Physics Research Section A. 2000;441(1–2):183–190. DOI: 10.1016/S0168-9002(99)01131-6.
  11. Madsen LB, Lambropoulos P. Scaling of hydrogenic atoms and ions interacting with laser fields: Positronium in a laser field. Phys. Rev. A. 1999;59(6):4574–4579. DOI: 10.1103/PhysRevA.59.4574.
  12. Gwinner G, Hoffknecht A, Bartsch T, Beutelspacher M, Eklow N et al. Influence of magnetic fields on electron–ion recombination at very low energies. Phys. Rev. Lett. 2000;84(21):4822–4825. DOI: 10.1103/physrevlett.84.4822.
  13. Hahn Y. Electron–ion recombination process – an overview. Rep. Prog. Phys. 1997;60(7):691–759. DOI: 10.1088/0034-4885/60/7/001.
  14. Keldysh LV. Ionization in the field of strong electromagnetic wave. Sov. Phys. JETP. 1965;20(5):1307–1314.
  15. Faisal FHM. Multiple absorption of laser photons by atoms. J. Phys. B. 1973;6(4):L89–K92. DOI: 10.1088/0022-3700/6/4/011.
  16. Reiss HR. Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A. 1980;22(5):1786–1813. DOI: 10.1103/PhysRevA.22.1786.
  17. Alaterre P, Matte JP, Lamoureux M. Ionization and recombination rates in non-Maxwellian plasmas. Phys. Rev. A. 1986;34(2):1578–1581. DOI: 10.1103/PhysRevA.34.1578.
  18. Amoretti M et al. Production and detection of cold antihydrogen atoms. Nature. 2002;419(6906):456–459. DOI: 10.1038/nature01096.
  19. Gabrielse G et al. Background-free observation of cold antihydrogen with field ionization analysis of its states. Phys. Rev. Lett. 2002;89(21):213401. DOI: 10.1103/PhysRevLett.89.213401.
  20. Bertsche W, Boston A, Bowe PD, Cesar CL et al. The ALPHA experiment: a cold antihydrogen trap. AIP Conference Proceedings. 2005;796:301–340. DOI: 10.1016/j.nima.2013.09.043.
  21. Men’shikov LI, Landua R. Current state of 'cold' antihydrogen research. Phys. Usp. 2003;46(3):227–257. DOI: 10.1070/PU2003v046n03ABEH001277.
  22. Ryabinina MV, Melnikov LA. Laser-induced antiproton-positron recombination in traps. Nuclear Instruments and Methods in Physics Research B. 2004;214:35–39. DOI: 10.1016/j.nimb.2003.08.012.
  23. Wolf A. Recombination physics. Nuclear Physics A. 2001;692(1–2):153–162. DOI: 10.1016/S0375-9474(01)01173-3.
  24. Pahl A, Eikema KSE, Walz J, Hansch TW. Combined trap for laser-stimulated recombination. Hyperfine Interactions. 2000;127(1–4):181–184. DOI: 10.1023/A:1012635432278.
  25. Eikema KSE, Walz J, and Hansch TW. Continuous coherent Lyman-alpha excitation of atomic hydrogen. Phys. Rev. Lett. 2001;86(25):5679–5682. DOI: 10.1103/physrevlett.86.5679.
  26. Storry CH, Speck A, Le Sage D, Guise N et al. First laser-controlled antihydrogen production. Phys. Rev. Lett. 2004;93(26):263401. DOI: 10.1103/PhysRevLett.93.263401.
  27. Laarmann T, de Castro AR, Gurtler P, Laasch W, Schulz J, Wabnitz H and Moller T. Photoionization of helium atoms irradiated with intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single-photon processes. Phys. Rev.A. 2005;72(2):023409. DOI: 10.1103/PhysRevA.72.023409.
  28. Charalambidis D, Tzallas P, Papadogiannis NA, Nikolopoulos LAA, Benis EP and Tsakiris GD. Comment on «Photoionization of helium atoms irradiated with  intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single photon processes». Phys. Rev. A. 2006;74(3):037401. DOI: 10.1103/PhysRevA.74.037401.
  29. Laarmann T, de Castro AR, Gurtler P, Laasch W, Schulz J, Wabnitz H and Moller T. Reply to «Comment on “Photoionization of helium atoms irradiated with intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single photon processes”». Phys. Rev. A. 2006;74(3):037402. DOI: 10.1103/PhysRevA.74.037402.
  30. Moshammer R, Jiang YH, Foucar L et al. Few-photon multiple ionization of Ne and Ar by strong free-electron-laser pulses. Phys. Rev. Lett. 2007;98(20):203001. DOI: 10.1103/PhysRevLett.98.203001.
  31. Zhang C, Liu X, Ding P and Qi Y. The enhancement of efficiency of high-order harmonic in intense laser field based on asymptotic boundary conditions and symplectic algorithm. J. Math. Chem. 2006;39(3–4):451–463. DOI: 10.1007/s10910-005-9042-0.
  32. Benis EP, Charalambidis D, Kitsopoulos TN, Tsakiris GD, and Tzallas P. Two-photon double ionization of rare gases by a superposition of harmonics. Phys. Rev. A. 2006;74(5):051402. DOI: 10.1103/PhysRevA.74.051402.
  33. Uiberacker M, Uphues T, Schultze M, Verhoef AJ et al. Attosecond real-time observation of electron tunnelling in atoms. Nature. 2007;446(7136):627–632. DOI: 10.1038/ nature05648.
  34. Corkum PB and Krausz F. Attosecond science. Nature Physics. 2007;3:381–387. DOI: 10.1038/nphys620.
  35. Girju MG, Hristov K, Kidun O and Bauer D. Nonperturbative resonant strong field ionization of atomic hydrogen. J. Phys. B At. Mol. Opt. Phys. 2007;40(21):4165–4179. DOI: 10.1088/0953-4075/40/21/004.
  36. Klews M and Schweizer W. Three-dimensional kicked hydrogen atom. Phys. Rev. A. 2001;64(5):053403. DOI: 10.1103/PhysRevA.64.053403.
  37. Duchateau G, Cormier E, Bachau H, Gayet R. Coulomb–Volkov approach of atom ionization by intense and ultrashort laser pulses. Phys. Rev. A. 2001;63(5):053411. DOI: 10.1103/PhysRevA.63.053411.
  38. Duchateau G, Cormier E, Gayet R. A simple non-perturbative approach of atom ionisation by intense and ultra-short laser pulses. Eur. Phys. J. D. 2000;11(2):191–196. DOI: 10.1007/s100530070083.
  39. Kaminski JZ, Ehlotzky F. Optimized X-ray generation by electron–ion recombination in the presence of powerful laser fields. Optics Communications. 2004;234(1–6):343–350. DOI: 10.1016/j.optcom.2004.01.074.
  40. Gusev AA, Chuluunbaatar O, Vinitsky SI, Kaschiev MS. High accuracy splitting algorithms for the time-dependent Schrodinger equation with a train of laser pulses. Proc. SPIE. 2004;5476:5476-14. DOI: 10.1117/12.578913.
  41. Ryabinina MV, Melnikov LA. Phase-sensitive ionization and recombination of antihydrogen atom using zero-duration high intensity laser pulse. AIP Conference Proc. 2005;796(1):325–329. DOI: 10.1063/1.2130189.
  42. Andreev AV. Interaction of an atom with superstrong laser fields. J. Exp. Theor. Phys. 1999;89(3):421–427. DOI: 10.1134/1.558999.
  43. Bordyug NV and Krainov VP. Dynamic resonances in ultra-short laser pulses. Laser Phys. Lett. 2007;4(6):418–420.
  44. Hu SX and Collins LA. Phase control of the inverse above-threshold-ionization process with few-cycle pulses. Phys. Rev. A. 2004;70(3):035401. DOI: 10.1103/PhysRevA.70.035401.
  45. Giraud S, Piraux B et al. Strong field atomic ionization dynamics: role of the Coulomb potential studied by means of a model. Proc. SPIE. 2006;6165:6165D. DOI: 10.1117/12.696848.
  46. Volkova EA, Popov AM, Tikhonov MA, Tikhonova OV. Atom under an intense laser pulse: Stabilization effect and strong-field approximation. J. Exp. Theor. Phys. 2007;105(3):526–534. DOI: 10.1134/S1063776107090087.
  47. Volkova EA, Gridchin VV, Popov AM, Tikhonova OV. Tunneling ionization of a hydrogen atom in short and ultrashort laser pulses. J. Exp. Theor. Phys. 2006;102(1):40–52. DOI: 10.1134/S1063776106010055.
  48. Landau LD, Lifshits EM. Quantum Mechanics. Butterworth-Heinemann; 1981. 689 p.
  49. Letokhov VS, Chebotaev VP. Nonlinear Laser Spectroscopy. Berlin: Springer; 1977. 466 p.
  50. Ryabinina MV, Melnikov LA. Coherent effects in free-bound transitions in hydrogen/antihydrogen atom under the action of ultra-short strong-field laser pulse. Proc. SPIE. 2007;6537:653705. DOI: 10.1117/12.753909.
Received: 
27.12.2007
Accepted: 
27.12.2007
Published: 
29.02.2008
Short text (in English):
(downloads: 87)