DYNAMICS OF ROLLER DOMAINS AT PARAMETRIC EXCITATION OF CAPILLARY WAVES IN RECTANGULAR GEOMETRY BOUNDARY


Cite this article as:

Kiyashko S. V., Afenchenko V. О., Nazarovsky А. V. DYNAMICS OF ROLLER DOMAINS AT PARAMETRIC EXCITATION OF CAPILLARY WAVES IN RECTANGULAR GEOMETRY BOUNDARY. Izvestiya VUZ, Applied Nonlinear Dynamics, 2013, vol. 21, iss. 6, pp. 58-68 DOI: 10.18500/0869-6632-2013-21-6-58-68


The work presents the results of experimental investigation of roller domains parametrically excited by the capillary waves. Domains rollers were oriented parallel to the different borders of the rectangular cell and perpendicular to each other. Found that depending on the initial and boundary conditions on the edges of the cell can emerge two-dimensional domains of different forms. The dynamics of the domain is determined by the movement of their fronts. A model is proposed to explain the observed phenomena, numerical calculations by which agree well with experiment.

DOI: 
10.18500/0869-6632-2013-21-6-58-68
Literature

1. Васильев В.А., Романовский Ю.М., Яхно В.Г. Автоволновые процессы. М.: Наука, 1987.

2. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984.

3. Львов В.С. Нелинейные спиновые волны. М.: Наука, 1987.

4. Физика и техника мощного ультразвука. Т. 3 / Под ред. Л.Д. Розенберга. М.: Наука, 1970.

5. Захаров В.Е., Львов В.С., Мушер С.Л. О нестационарном поведении системы параметрически возбужденных спиновых волн // Физика твердого тела. 1972. Ш4. С. 2913.

6. Езерский А.Б., Рабинович М.И., Реутов В.П., Старобинец И.М. Пространственно-временной хаос при параметрическом возбуждении капиллярной ряби // ЖЭТФ. 1986. Т. 91, вып. 6, No 12. С. 2070.

7. Ezersky A.B., Nazarovsky A.V., Kiyashko S.V. Bound states of topological defects in parametrically excited capillary ripples // Physica D. 2001. Vol. 152–153. P. 310.

8. Матусов П.А., Цимринг Л.Ш. Распространение фронта параметрически возбуждаемой капиллярной ряби // Препринт No 225, Горький, ИПФ АН, 1988.

9. Ezersky A.B., Kiyashko S.V., Matusov P.A., Rabinovich M.I. Domain, domain walls and dislocations in capillary ripples // Europhys. Lett. 1994. Vol. 26, No 3. P. 183.

10. Kiyashko S.V., Korzinov L.N., Rabinovich M.I., Tsimring L.S. Rotating spirals in a Faraday experiment // Phys. Rev. E. 1996. Vol. 54, No 5. P. 5037.

11. Афенченко В.О., Кияшко С.В., Пискунова Л.В. Движение фронта при конкуренции роликовых доменов параметрически связанных волн // Изв. РАН. Сер. Физ. 2004. Т. 68, No 12. С. 1771.

12. Кияшко С.В. Динамика роликовых доменов параметрически возбуждаемых капиллярных волн // Изв. вузов. Радиофизика. 2008. Т. LI, No 4. С. 359.

13. Кияшко С.В., Назаровский А.В. Структуры при параметрическом возбуждении капиллярной ряби в слое с периодической неоднородностью глубины // Изв. РАН. Сер. Физ. 2000. Т. 64, No 12. С. 2405.

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Кияшко-IzvVUZ_AND-21-6-58,
author = {S. V. Kiyashko and V. О. Afenchenko and А. V. Nazarovsky },
title = {DYNAMICS OF ROLLER DOMAINS AT PARAMETRIC EXCITATION OF CAPILLARY WAVES IN RECTANGULAR GEOMETRY BOUNDARY},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {6},
url = {http://andjournal.sgu.ru/en/articles/dynamics-of-roller-domains-at-parametric-excitation-of-capillary-waves-in-rectangular},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-6-58-68},pages = {58--68},issn = {0869-6632},
keywords = {Pattern formation,capillary waves,roller structure,competition of domains.},
abstract = {The work presents the results of experimental investigation of roller domains parametrically excited by the capillary waves. Domains rollers were oriented parallel to the different borders of the rectangular cell and perpendicular to each other. Found that depending on the initial and boundary conditions on the edges of the cell can emerge two-dimensional domains of different forms. The dynamics of the domain is determined by the movement of their fronts. A model is proposed to explain the observed phenomena, numerical calculations by which agree well with experiment. }}