ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Chumakova M. M. Effect of delayed reflection from the remote load on mode competition in а gyrotron. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 62-71. DOI: 10.18500/0869-6632-2013-21-3-62-71

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 138)
Language: 
Russian
Article type: 
Article
UDC: 
537.86/530.182

Effect of delayed reflection from the remote load on mode competition in а gyrotron

Autors: 
Chumakova Marija Mihajlovna, Saratov State University
Abstract: 

Effect of reflection from the remote load on the mode competition in a two-mode electronic maser is considered. A system of quasilinear equations for slowly varying amplitudes of the modes with cubic nonlinearity where the effect of reflections is taken into account by time delayed terms is analyzed. The most typical case of competition of two modes with close frequencies at the centre of generation zone is studied in detail. Change of generation regimes with increasing of reflections of the spurious mode at different values of delay is investigated analytically and numerically.

Reference: 
  1. Antonsen TM, Cai SY, Nusinovich G.S. Effect of window reflection on gyrotron operation. Phys. Fluids B. 1992;4(12):4131–4139. DOI:10.1063/1.860320.
  2. Glyavin MJ, Zapevalov VE. The influence of reflections on the stability of gyrotron autooscillations. Radiophysics and Quantum Electronics. 1998;41(10):916–922. DOI: 10.1007/BF02676460.
  3. Glyavin MJ, Zapevalov VE, Kuftin AN, Luchinin AG. Experimental study of the output radiation spectrum of a gyrotron with partial reflection of the output signal. Radiophysics and Quantum Electronics. 2000;43(5):396--399. DOI: 10.1007/BF02677156.
  4. Gantenbein G, Borie E, Dammertz G, Kuntze M, Nickel H-U, Piosczyk B, Thumm M. Experimental results and numerical simulations of a high power 140 GHz gyrotron. IEEE Trans. Plasma Sci. 1994;22(5):861–870. DOI:10.1109/27.338301.
  5. Borie E. Effect of reflection on gyrotron operation. IEEE Trans. Microwave Theory Tech. 2001;49(7):1342–1345. DOI:10.1109/22.932256.
  6. Dumbrajs O, Glyavin MYu, Zapevalov VE, Zavolsky NA. Influence of reflections on mode competitions in gyrotrons. IEEE Trans. Plasma Sci. 2000;28(3):588–596. DOI:10.1109/27.887680.
  7. Dumbrajs O, Idehara T, Watanabe S, Kimura A, Sasagawa H, Agusu L, Mitsudo S, Piosczyk B. Reflections in gyrotrons with axial output. IEEE Trans. Plasma Sci. 2004;32(3):899–902. DOI:10.1109/TPS.2004.827596.
  8. Dumbrajs O, Nusinovich GS, Piosczyk B. Reflections in gyrotrons with radial output: Consequences for the ITER coaxial gyrotron. Phys. Plasmas. 2004;11(12):5423–5429. DOI:10.1109/ICIMW.2004.1422017.
  9. Dumbrajs O. Influence of possible reflections on the operation of European ITER gyrotrons. J. Infrared Millim. Terahz. Waves. 2010;31(8):892–898. DOI:10.1007/s10762-010-9653-9.
  10. Novozhilova JV, Ryskin NM, Chumakova MM. Effect of reflection from remote load on mode competition in gyrotron with quasi­-optical mode convertor. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(6):136-147. DOI: 10.18500/0869-6632-2012-20-6-136-147.
  11. Batanov GM, Kolik LV, Novozhilova JV, Petelin MI. et al. Response of a gyrotron to small-amplitude low-frequency-modulated microwaves reflected from a plasma. Technical Physics. 2001;46(5):595-600. DOI: 10.1134/1.1372953.
  12. Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980;16(3):347–355. DOI: 10.1109/JQE.1980.1070479.
  13. Landa PS. Nonlinear oscillations and waves. Moscow: Nauka, Fizmatlit; 1997. 496 p.
  14. Usanov DA, Skripal AB, Skripal AB. Physics of semiconductor radio-frequency and optical autodynes. Saratov: Saratov University Publishing; 2003. 312 p. (In Russian).
  15. Novozhilova YV, Ryskin NM, Usacheva SA. Nonstationary processes in an oscillator with delayed reflection from the load. Technical Physics. 2011;56(9):1235-1242. DOI: 10.1134/S1063784211090167.
  16. Nusinovich GS. Theory of a multimode gyrotron. Gyrotron. Gorky: IPF AS USSR; 1981. 146–168 p.
  17. Nusinovich GS. Mode interaction in gyrodevices. Int. J. Electron. 1981;51(4):457–474. DOI:10.1080/00207218108901349.
  18. Weinstein LA. General theory of resonant electronic self-generators. High-capacity electronics. Moscow: Nauka; 1969. 84–133 p. (In Russian).
  19. Pishik LA, Trubetskov DI, Chetverikov AP. Non-stationary processes in resonant relativistic generators of type O. Lectures on microwave electronics and radiophysics. Saratov: Saratov University Publishing; 1981.
  20. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear oscillations. Moscow: Fizmatlit; 2005. 292 p.
  21. Rabinovich MI, Trubetskov DI. Introduction to the theory of oscillations and waves. Moscow: Nauka; 1984. 432 p.
  22. Ultra-high frequency electronic devices. Ed. Shevchik VN, Grigoreva MA. Saratov: Saratov University Publishing; 1980. 437 p. (In Russian).
Received: 
01.04.2013
Accepted: 
10.06.2013
Published: 
31.10.2013
Short text (in English):
(downloads: 92)