ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kurkin S. A., Badarin A. A., Koronovskii A. A., Rak A. O., Hramov A. E. Higher harmonics generation in a relativistic electron beam with virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 1, pp. 41-52. DOI: 10.18500/0869-6632-2015-23-1-41-52

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 235)
Language: 
Russian
Article type: 
Article
UDC: 
533.9

Higher harmonics generation in a relativistic electron beam with virtual cathode

Autors: 
Kurkin Semen Andreevich, Innopolis University
Badarin Artem Aleksandrovich, Immanuel Kant Baltic Federal University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Rak Aleksej Olegovich, Belarusian State University of Informatics and Radioelectronics
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Abstract: 

The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

Reference: 
  1. Sullivan D.J., Walsh J.E., and Coutsias E.A. Virtual cathode oscillator (vircator) theory // High Power Microwave Sources. 1987. Vol. 13.
  2. Gold S.H. and Nusinovich G.S. // Review of Scientific Instruments. 1997. Vol. 68. P. 3945.
  3. Benford J., Swegle J.A., and Schamiloglu E. High Power Microwaves. CRC Press, Taylor and Francis, 2007.
  4. Mahaffey R.A., Sprangle P.A., Golden J., and Kapetanakos C.A. // Phys. Rev. Lett. 1977. Vol. 39. P. 843.
  5. Hramov A.E., Koronovskii A.A., and Kurkin S.A. // Phys. Lett. A. 2010. Vol. 374. P. 3057.
  6. Dubinov A.E. and Selemir V.D., Commun J. // Technology & Electron. 2002. Vol. 47. P. 575.
  7. Dubinov A.E., Kornilova Yu.I., and Selemir V.D. // Physics-Uspekhi. 2002. Vol. 45. P. 1109.
  8. Biswas D. // Physics of Plasmas. 2009. Vol. 16. 063104.
  9. Filatov R.A., Hramov A.E., Bliokh Y.P., Koronovskii A.A., and Felsteiner J. // Physics of Plasmas. 2009. Vol. 16. 033106.
  10. Kurkin S.A., Hramov A.E., and Koronovskii A.A. // APL. 2013. Vol. 103.
  11. Burkhart S.C., Scarpetty R.D., and Lundberg R.L. // J. Appl. Phys. 1985. Vol. 58. P. 28.
  12. Hoeberling R.F. and Fazio M.V. // IEEE Trans. Electromagnetic Compatibility. 1992. Vol. 34. P. 252.
  13. Hramov A.E., Koronovsky A.A., Kurkin S.A., and Rempen I.S. // Int. J. of Electronics. 2011. Vol. 98. P. 1549.
  14. Clements K.R., Curry R.D., Druce R., Carter W., Kovac M., Benford J., and McDonald K. // IEEE Trans. on Diel. and El. Insul. 2013. Vol. 20. P. 1085.
  15. Dubinov A.E., Efimova I.A., Mikheev K.E., Selemir V.D., and Tarakanov V.P. // Plasma Physics Reports. 2004. Vol. 30. P. 496.
  16. Singh G. and Shashank C. // Physics of Plasmas. 2011. Vol. 18. 063104.
  17. Verma R., Shukla R., Sharma S.K., Banerjee P., Das R., Deb P., Prabaharan T., Das B., Mishra E., Adhikary B., Sagar K., Meena M., and Shyam A. // IEEE Trans. Electron Devices. 2014. Vol. 61. P. 141.
  18. Booske J.H. // Physics of Plasmas. 2008. Vol. 15. 055502.
  19. Siegel P.H. // IEEE Trans. Microwave Theory Techniques. 2002. Vol. 50. P. 910.
  20. Kawase K., Ogawa Y., Watanabe Y., and Inoue H. // Optics Express. 2003. Vol. 11. P. 2549.
  21. Ferguson B. and Zhang X.C. // Nature Materials. 2002. Vol. 1. P. 26.
  22. Mann C.M. Terahertz Sources and Systems. Kluwer, Dordrecht, 2001.
  23. Zhanfeng Yang, Guozhi Liu, Hao Shao, Jun Sun, Yuchuan Zhang, Hu Ye, and Meng Yang // IEEE Trans. Plasma Science. 2013. Vol. 41. P. 3604.
  24. Hramov A.E., Kurkin S.A., Koronovskii A.A., and Filatova A.E. // Physics of Plasmas. 2012. Vol. 19. 112101.
  25. Saito T., Yamada N., and Ikeuti S. // Physics of Plasmas. 2012. Vol. 19. 063106.
  26. Hornstein M.K., Bajaj V.S., Griffn R.G., Kreischer K.E., Mastovsky I., Shapiro M.A., Sirigiri J.R., and Temkin R.J. // IEEE Trans. Electron Devices. 2005.Vol. 52. P. 798.
  27. Bratman V.L., Fedotov A.E., Kalynov Y.K., Manuilov V.N., Ofitserov M.M., Samsonov S.V., and Savilov A.V. // IEEE Trans. Plasma Science. 1999. Vol. 27. P. 456.
  28. Notake T., Saito T., Tatematsu Y., Fujii A., Osagawara S., La Agusu, Ogawa I., Idehara T., and Manuilov V.N. // PRL. 2009. Vol. 103. 225002.
  29. Vyalykh D.V., Dubinov A.E., Zhdanov V.S., L’vov I.L., Sadovoi S.A., and Selemir V.D. // Technical Physics Letters. 2013. Vol. 39. P. 217.
  30. Brandt H.E. // IEEE Trans. Plasma Science. 1985. Vol. 13. P. 513.
  31. Tsimring Shulim E.// Electron beams and microwave vacuum electronics. John Wiley and Sons, Inc., Hoboken, New Jersey, 2007.
  32. Hramov A.E., Koronovskii A.A., Morozov M.Yu., and Mushtakov A.V. // Phys. Lett. A. 2008. Vol. 372. P. 876.
  33. Kurkin S.A. and Hramov A.E. // Technical Physics Letters. 2009. Vol. 35. P. 23.
  34. Lawson J.D. The Physics of Charged-Particle Beams: Monographs on Physics. Oxford: University Press, 1977.
  35. Granatstein V.L. and Alexeeff I. High Power Microwave Sources. Artech House Microwave Library, 1987.
  36. Kurkin S.A., Koronovskii A.A., and Hramov A.E. // Technical Physics Letters. 2011. Vol. 37. P. 356.
Received: 
06.04.2015
Accepted: 
06.04.2015
Published: 
30.06.2015
Short text (in English):
(downloads: 95)