ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)

Cite this article as:

Astahov V. V., Nehodceva E. I., Astahov S. V., Shabunin A. V. Influence of time delay coupling on the complete synchronization of chaos in chaotic systems with discrete time. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 5, pp. 61-67. DOI:


Influence of time delay coupling on the complete synchronization of chaos in chaotic systems with discrete time

Astahov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Nehodceva Ekaterina Igorevna, Saratov State University
Astahov Sergej Vladimirovich, Saratov State University
Shabunin Aleksej Vladimirovich, Saratov State University

In the work the in?uence of time delay of coupling on the complete synchronization of chaos in an interacting systems with discrete time is studied. The system’s behavior is considered in dependence on coupling coe?cient value and delay time value. It is established that coupling with time delay prevents appearance of the complete synchronization of chaos, however it allows the synchronization of periodic and quasi-periodic oscillations.

Key words: 

1. Raddy D.V.R., Sen A., Johnston G.L. Time delay induced death in coupled limit cycle oscillators // Phys. Rev. Lett. 1998. Vol. 80. P. 5109. 2. Raddy D.V.R., Sen A., Johnston G.L. Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators // Phys. Rev. Lett. 2000. Vol. 85. P. 3381. 3. Yeung M.K.S., Strogatz S.H. Time delay in the Кuramoto model of coupled oscillators // Phys. Rev. Lett. 1999. Vol. 82. P. 648. 4. Chung T.-H., Kim S. Spatio-temporal dynamics in locally coupled Ginzburg-Landau oscillator chain with time delay // CP501. Stochastic Dynamics and Pattern Formation in Biological and Complex Systems / Edited by S. Kim, K.J. Lee, W. Sung. P. 67. 5. Jiang Y. Globally coupled maps with time delay interactions // Physics Letters A. 2000. Vol. 267. P. 342. 6. Astakhov V., Shabunin A., Klimshin A., Anishchenko V. In-phase and anti-phase complete chaotic synchronization in symmetrically coupled discrete maps // Discrete Dynamics in Nature and Society. 2002. Vol. 7. P. 215. 7. Астахов В.В., Шабунин А.В., Анищенко В.С. Механизмы разрушения хаотической синхронизации в системе связанных кубических отображений // Изв. вузов: Прикладная нелинейная динамика. 1999. Т. 7. No 2,3. С. 3. 8. Коблянский С.А. // В сборнике «Нелинейные дни для молодых в Саратове. 2007» (в печати).

Short text (in English): 
Full text: