ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Nujdel I. V., Sokolov M. E., Jahno V. G. Macroscopic model of visual processing in brain structures in normal condition and description of the transition to epileptiform regime. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 5, pp. 92-106. DOI: https://doi.org/10.18500/0869-6632-2015-23-5-92-106

Language: 
Russian

Macroscopic model of visual processing in brain structures in normal condition and description of the transition to epileptiform regime

Autors: 
Nujdel Irina Vladimirovna, Institute of Applied Physics of the Russian Academy of Sciences
Sokolov Maksim Evgenevich, Institute of Applied Physics of the Russian Academy of Sciences
Jahno Vladimir Grigorevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

This paper presents the functional model of signal processing in networks of similar interconnected active elements. On the one hand, it is a macroscopic model of the dynamic interactions between neural networks and its states can be considered as normal and abnormal modes of signal processing (for example, images). On the other hand, the model and the calculation results can be considered as a variant of modeling epilepsy. In this paper we develop an information macroscopic approach to the modeling of epilepsy, which in this sense is unique.   Download full version

DOI: 
10.18500/0869-6632-2015-23-5-92-106
References: 

1. Hodgkin A.L., Huxley A.F. // J. Physiol. 1952. Vol. 117. P. 500. 2. Gerstner W., Kistler W. Spiking Neuron Models: Single Neurons, Populations, Plasticity // Cambridge: Cambridge University Press, 2002. 3. Van Drongelen W., Lee H.C., Stevens R.L., Hereld M. // J. Clin. Neurophysiol. 2007. Vol. 24(2). P. 182. 4. Wilson H.R., Cowan J.D. // Biophys. J. 1972. Vol. 12(1). P. 1. 5. Sbitnev V.I., Drabkin G.M. // Biophysics. 1975. Т. 20. C. 669 ( in Russian). 6. Kudryashov A.V., Yakhno V.G. // Dynamics of Biological Systems. 1978. Iss. 2. P. 45 (in Russian). 7. Destexhe A., Sejnowski T.J. // Biol. Cybern. 2009. July. Vol. 101(1). P. 1. 8. Suffczynski P., Kalitzin S., Lopes Da Silva F.H. // Neuroscience. 2004. Vol. 126(2). P. 467. 9. Wendling F., Bartolomei F., Bellanger J.J., Bourien J., Chauvel P. // Brain. 2003. Vol. 126 (6). P. 1449. 10. Wendling F., Hernandez A., Bellanger J.J., Chauvel P., Bartolomei F. // J. Clin. Neurophysiol. 2005. Vol. 22 (5). P. 343. 11. Soltesz I., Staley K.J. Computational Neuroscience in Epilepsy. Elsevier, 2008. 12. Markram H. // Nat. Rev. Neurosci. 2006. Vol. 7(2). P. 153. 13. Prinz A.A., Bucher D., Marder E. // Nat. Neurosci. 2004. Vol. 7(12). P. 1345. 14. Herz A.V., Gollisch T., Machens C.K., Jaeger D. // Science. 2006. Vol. 314 (5796). P. 80. 15. Vergnes M., Marescaux C. et al. // Neurosci. Lett. 1982. Vol. 33. P. 97. 16. Coenen A., van Luijtelaar G. // Behav. Genetics. 2003. Vol. 33. P. 635. 17. Depaolis A., van Luijtelaar G. // Eds A. Pitkanen, P. Schwartzkroin, S. Moshe. Models of Seizures and Epilepsy // San Diego, CA: Elsevier, 2005. P. 233. 18. van Luijtelaar G., Sitnikova E. // Neurosci. Biobehav. Rev. 2006. Vol. 30. P. 983. 19. Meeren H., Pijn J., van Luijtelaar G., Coenen A., Lopes da Silva А. // Arch. Neurology. 2002. Vol. 62. P. 371. 20. Kuznetsova G.D., Popova A.V., Sokolov M.E. // Nonlinear dynamics of cognitive studies - 2011: Proceedings / Ros.akad.nauk, Institute of Applied Physics. Nizhny Novgorod: IAP RAS, 2011. P. 107 (in Russian). 21. Yahno V.G. // Proceedings / Nonlinear Waves 2002 / Eds A.V. Gaponov-Grekhov, V.I. Nekorkin. Nizhny Novgorod: IAP RAS, 2003. P. 90 (in Russian). 22. Shevelev I.A. // Priroda. 2001. No 12 (in Russian). 23. http://vivovoco.rsl.ru/VV/JOURNAL/NATURE/12_01/ALPHA.HTM 24. Hecht-Nielsen R. // Proceedings of the 6th International Conference on Molecular Electronics and Biocomputing. Future Electronic Devices Association of Japan, Okinawa, 28–30 November 1995. 25. Platt N., Spiegel E.A., Tresser C. // Phys. Rev. Lett. 1993. Vol. 70, No 3. P. 279.

Short text (in English): 
Full text: