ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Dudko G. M., Khivintsev Y. V., Sakharov V. K., Kozhevnikov A. V., Vysotskii S. L., Seleznev M. E., Filimonov Y. A., Khitun A. G. Micromagnetic modeling of nonlinear interaction of lateral magnetostatic modes in cross-shaped structures based on waveguides from iron yttrium garnet films. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, iss. 2, pp. 39-60. DOI: 10.18500/0869-6632-2019-27-2-39-60

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 278)
Language: 
Russian
Article type: 
Article
UDC: 
537.622.2; 537.862

Micromagnetic modeling of nonlinear interaction of lateral magnetostatic modes in cross-shaped structures based on waveguides from iron yttrium garnet films

Autors: 
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Seleznev M. E., Saratov State University
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khitun Aleksander Georgievich, University of California-Riverside
Abstract: 

Topic. In this work, parametric processes in the system of predominantly dipole magnetostatic waves (MSW) in the cross-shaped structure from two orthogonal waveguides of iron yttrium garnet film magnetized by the in-plane field H = 460 Oe and having microstrip transducers at its ends are considered. One of the antennas at the end of the transversely magnetized waveguide was assumed as an input and was used to excite MSW with the frequency of 3 GHz. Aim. The goal was to analyze the spectral and amplitude characteristics of MSW using the output antennas, depending on the amplitude of the excitation field, to identify features of the second order parametric processes in cross-like structure. Methods. To deal with the problem we used micromagnetic simulations solving the Landau-Lifshits equation by a finite-difference method using the OOMMF software. Results. It is shown that when the input signal amplitude exceeds the certain threshold, the dependence of the output MSW amplitude on the input amplitude becomes significantly nonlinear. This is accompanied by the appearance of intensive satellites in the spectrum located symmetrically with respect to the pump frequency at distances from tens to hundreds of MHz. These changes are associated with the second order parametric instability emerging in the system of lateral modes in the crossing waveguides. Discussion. The obtained results can be used for the development of structures based on spin waveguides’ networks for multi-level reverse logic devices.

Reference: 
  1. Nikitov S.A., Kaliabin D.V., Lisenkov I.V., Slavin A.N., Barabanenkov Yu.N., Osokin S.A., Sadovvnikov A.V., Baginin E.N., Morozova M.A., Sharaevskii Yu.P., Filimonov Y.A., Khivintsev Y.V., Vysotskii S.L., Sakharov V.K., Pavlov E.S. Magnonics: A new research area in spintronics and spin wave electronics. Phys. Usp., 2015, vol. 58, no. 10, pp. 1002–1028, DOI:10.3367/UFNr.0185.201510m.1099.
  2. Beginin E.N., Sadovnikov A.V., Sharaevskaya A.Yu., Stognij A.I., Nikitov S.A. Spin wave steering in three-dimensional magnonic networks // Appl. Phys. Lett. 2018. Vol. 112. P. 122404.
  3. Sadovnikov A.V., Grachev A.A., Sheshukova S.E., Sharaevskii Yu.P., Serdobintsev A.A., Mitin D.M., Nikitov S.A. Magnon straintronics: Reconfigurable spin-wave routing in strain-controlled bilateral magnetic stripes // Phys. Rev. Lett. 2018. Vol. 120. P. 257203.
  4. O’Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finite samples // J. Appl. Ptys. 1978. Vol. 49, № 9. Pp. 4886–4895. 
  5. Vysotskii S.L., Nikitov S.A., Filimonov Y.A., Khivintsev Y.V. Hybridization of spin-wave modes in a ferromagnetic microstrip. JETP Letters, 2008, vol. 88, p. 461, DOI:10.1134/S0021364008190119.
  6. Vysotskii S.L., Dudko G.М., Dzhumaliev А.S., Kozhevnikov A.V., Nikulin Yu.V., Saharov V.K., Khivintsev Y.V., Filimonov Y.A., Khitun А.G., Nikitov S.A. Spectrum of the ferromagnetic resonance of a lattice of orthogonal permalloy microwaveguides. Journal of Communications Technology and Electronics, 2018, vol. 63, no. 9, pp. 1047–1052, DOI: 10.1134/S1064226918090255.
  7. Grechushkin K.V., Stalmakhov A.V., Tyulyukin V.А. Wave-guide distribution of magnetostatic waves. Pisma v ZhTP, 1988, vol. 14, no. 21, p. 1973 (in Russian).
  8. Wang Q., Zhang H., Ma G., Liao Y., Zheng Y., Zhong Z. Position dependent spin wave spectrum in nanostrip magnonic waveguides // Journal of Applied Physics. 2014. Vol. 115. P. 133906, DOI: 10.1063/1.4870448.
  9. Collet M., Gladii O., Evelt M., Bessonov V., Soumah L., Bortolotti P., Demokritov S.O., Henry Y., Cros V., Bailleul M., Demidov V.E., Anane A. Spin-wave propagation in ultra-thin YIG based waveguides // Appl. Phys. Lett. 2017. Vol. 110. P. 092408, DOI: 10.1063/1.4976708.
  10. Demidov V.E., Demokritov S.O., Rott K., Krzysteczko P., Reiss G. Mode interference and periodic self-focusing of spin waves in permalloy microstripes // Phys. Rev. B. 2008. Vol. 77. P. 064406, DOI: 10.1103/PhysRevB.77.064406.
  11. Pirro P., Bracher T., Vogt K., Obry B., Schultheiss H., Leven B., Hillebrands B. Interference of coherent spin waves in micron-sized ferromagnetic waveguide // Phys. Status Solidi B. 2011. Vol. 248. Pp. 2404–2408, DOI: 10.1002/pssb.201147093.
  12. Rousseau O., Rana B., Anami R., Yamada M., Miura K., Ogawa S., Otani Y. Realization of a micrometre-scale spin-wave interferometer // Scientific Reports. 2015. Vol. 5. P. 09873, DOI: 10.1038/srep09873.
  13. Gurevich А.G., Melkov G.А. Magnetization Oscillations and Waves. CRC Press, Boca Raton, 1996, 464 p.
  14. Schulz M. Spin-wave correlator // J. Appl. Phys. 1972. Vol. 43. P. 4752.
  15. Kazakov G.T., Kotelyanskii I.M., Maryahin A.V., Filimonov Y.A., Khivintsev Y.V. Convolution of surface magnetoelastic waves in Ga, Sc-substituted Yttrium–Iron Garnet films. Journal of Communications Technology and Electronics, 2005, vol. 50, iss. 1, pp. 55–66.
  16. Kazakov G.T., Pylaev E.S. Kombinacionnoe preobrazovanie chastoty vstrechnyh magnitostaticheskih voln s vozbuzhdeniem svrhsvetovyh voln namagnichivanija. Pisma v ZhTP, 1983, vol. 9, no. 20, P. 1240 (in Russian)
  17. Vаshchеnkо V.I., Zаvislyak I.V. 3-wave interactions of magnetostatic waves. Izvestiya Vysshikh Uchebnykh Zavedenii Radiofizika, 1989, vol. 32, no. 1, pp. 41–48 (in Russian)
  18. Ulrichs H., Demidov V.E., Demokritov S.O., Urazhdin S. Parametric excitation of eigenmodes in microscopic magnetic dots // Phys. Rev. B. 2011. Vol. 84. P. 094401.
  19. Bracher T., Pirro P., Obry B., Leven B., Serga A.A., Hillebrands B. Mode selective parametric excitation of spin waves in NiFe microstripe // Appl. Phys. Lett. 2011. Vol. 99. P. 162501.
  20. Guo F., Belova L.M., McMichaely R.D. Parametric pumping of precession modes in ferromagnetic nanodisks // Physical Review B. 2014. Vol. 89. P. 104422, DOI: 10.1103/PhysRevB.89.104422.
  21. Bauer H.G., Majchrak P., Kachel T., Back C.H., Woltersdorf G. Nonlinear spin-wave excitations at low magnetic bias fields // Nature Communications. 2015. Vol. 6. P. 8274, DOI: 10.1038/ncomms9274.
  22. Ciubotaru F., Serga A.A., Leven B., Hillebrands B. Mechanism of nonlinear spin-wave excitation from a microwave-driven nanocomtact // Physical Review B. 2001. Vol. 84. P. 144424, DOI: 10.1103/PhysRevB.84.144424.
  23. Roy U., Pramanik T., Tsoi M., Register L.F., Banerjee S.K. Micromagnetic study of spin-transfertorque switching of a ferromagnetic cross towards multi-state spin-transfer-torque based random access memory// Journal of Applied Physics. 2013. Vol. 113. P. 223904, DOI: 10.1063/1.4811230.
  24. Davies C.S, Francis A., Sadovnikov A.V., Chertopalov S.V., Bryan M.T., Grishin S.V., Allwood D.A., Sharaevskii Y.P., Nikitov S.A., Kruglyak V.V. Towards graded-index magnonics: Steering spin waves in magnonic networks // Phys. Rev. B. 2015. Vol. 92, no. 2. P. 020408, DOI: 10.1103/PhysRevB.92.020408.
  25. Sadovnikov A.V., Beginin E.N., Sheshukova S.E., Romanenko D.V., Sharaevski Yu.P., Nikitov S.A. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes // Appl. Phys. Lett. 2015. Vol. 107. P. 202405, DOI: 10.1063/1.493620.
  26. Dudko G.M., Kozhevnikov A.V., Khivintsev Y.V., Filimonov Y.A., Khitun A.G., Nikitov S.A. Micromagnetic simulation of propagation of spin waves in In-Plane magnetized crosses based on ferrite microwaveguides of different width. Journal of Communications Technology and Electronics, 2018, vol. 63, no. 10, pp. 1212–1216, DOI: 10.1134/S1064226918100091.
  27. Sadovnikov A.V., Beginin E.N., Morozova M.A., Sharaevski Yu.Pi, Grishin S.V., Sheshukova S.E., Nikitov S.A. Nonlinear spin wave coupling in adjacent magnonic crystals // Appl. Phys. Lett. 2016. Vol. 109. P. 042407, DOI: 10.1063/1.4960195.
  28. Sadovnikov A.V., Odintsov S.A., Beginin E.N., Sheshukova S.E., Sharaevskii Yu.P., and Nikitov S.A. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating sidecoupled magnetic stripes // Phys. Rev. B. 2017. Vol. 96. P. 144428, DOI: 10.1103/PhysRevB.96.144428.
  29. Sadovnikov A.V., Odintsov S.A., Beginin E.N., Grachev A.A., Gubanov V.A., Sheshukova S.E., Sharaevskii Yu.P., Nikitov S.A. Nonlinear spin wave effects in the system of lateral magnonic structures. JETP Letters, 2018, vol. 107, pp. 25–29, DOI: 10.7868/S0370274X1801006X.
  30. Donahue M. and Porter D. Object Oriented Micro Magnetic Framework (OOMMF). Interagency Report NISTIR 6376. National Institute of Standards and Technology. Gaithersburg: MD, Sept. 1999. 897 p. www. math.nist.gov/oommf/
  31.  Khitun A.G., Kozhanov A.E. Magnonic Logic Devices. Izvestia Saratovskogo Universiteta. Novaya seriya. Seriya Fizika, 2017, vol. 17, no. 4. pp. 216–241 (in English).
  32. Klingler S., Pirro P., Bracher T., Leven B., Hillebrands B., Chumak A.V. Spin-wave logic devices based on isotropic forward volume magnetostatic waves // Appl. Phys. Lett. 2015. Vol. 106. P. 212406, DOI:10.1063/1.4921850.
  33. Nanayakkara K., Anferov A., Jacob A.P., Allen S.J., Kozhanov A. Cross junction spin wave logic architecture // IEEE Trans. Magnetics. 2014. Vol. 50. P. 3402204, DOI: 10.1109/TMAG.2014.2320632.
  34. Balynsky M., Kozhevnikov A., Khivintsev Y., Bhowmick T., Gutierrez D., Chiang H., Dudko G., Filimonov Y., Liu G., Jiang C., Balandin A.A., Lake R., Khitun A. Magnonic interferometric switch for multi-valued logic circuits // Journal of Applied Physics. 2017. Vol. 121. P. 024504, DOI:10.1063/1.4973115.
  35. Balynsky M., Gutierrez D., Chiang H., Kozhevnikov A., Dudko G., Filimonov Y., Balandin A.A. & Khitun A.A. Magnetometer based on a spin wave interferometer // Scientific Reports. 2017. Vol. 7. P. 11539.
  36. Magpar – Parallel Finite Element Micromagnetics Package Version 0.9 Build 3061M (2002). www.magpar.net/static/magpar/doc/html/index.html
  37. Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications. Springer Science+Business Media, 2009. LLC, no. 2008936559, DOI 10.1007/978-0-387-77865-5.
  38. Kalinikos B.A., Slavin A.N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions // J. Phys. C: Solid State Phys. 1986. Vol. 19. P. 7013.
  39. Filimonov Yu.A., Sakharov V.K., Khivintsev Yu.V., Vysotsky S.L., Stognij A.I., Dudko G.M. Influence of input signal power on magnetostatic surface waves propagation in Yttrium-Iron Garnet films on silicon substrates. Izvestiya VUZ. Applied Nonlinear Dynamics, 2017, vol. 25. pp. 35–51, DOI: 10.18500/0869-6632-2017-25-1-35-51 (in Russian).
  40. Jorzick J., Demokritov S.O., Hillebrands B., Bailleul M., Fermon C., Guslienko K.Y., Slavin A.N., Berkov D.V., Gorn N.L. Spin Wave Wells in Nonellipsoidal Micrometer Size Magnetic Elements // Phys. Rev. Lett. 2002. Vol. 88. P. 047204, DOI: 10.1103/PhysRevLett.88.047204.
  41. Galishnikov А.А., Dudko G.M., Kozhevnikov A.V., Marcelli R., Nikitov S.A., Filimonov Y.А. Magnetostatic surface wave pulses self-action effects under propagation in ferrite-dielectricmetall structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 3, pp. 3–33, DOI: 10.18500/0869-6632-2006-14-3-3-33 (in Russian).
  42. Marcelli R., Nikitov S.A., Filimonov Yu.A., Galishnikov A.A., Kozhevnikov A.V., Dudko G.M. Magnetostatic surface wave bright solitons propagation in ferrite-dielectric-metal structure // IEEE Trans. Magnetics. 2006. Vol. 42, № 7. Pp. 1785–1801, DOI: 10.1109/TMAG.2006.87200.
  43. Kazakov G.T., Kozhevnikov A.V., Filimonov Y.A. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Phys. Solid State, 1997, vol. 39, p. 288, DOI:10.1134/1.1129801.
  44. Kazakov G.T., Kozhevnikov A.V., Filimonov Y.A. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. J. Exp. Theor. Phys., 1999, vol. 88, p. 174, DOI:10.1134/1.558780.
Received: 
11.12.2018
Accepted: 
20.02.2019
Published: 
24.04.2019
Short text (in English):
(downloads: 204)