ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Dmitriev A. S., Gerasimov M. J., Emeljanov R. J., Ickov V. V. Modelling ensembles of nonlinear continuous time dynamical systems in active ultra wideband wireless networks. Izvestiya VUZ, 2015, vol. 23, iss. 2, pp. 21-36. DOI: https://doi.org/10.18500/0869-6632-2015-23-2-21-36

Language: 
Russian

Modelling ensembles of nonlinear continuous time dynamical systems in active ultra wideband wireless networks

Autors: 
Dmitriev Aleksandr Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Gerasimov Mark Jurevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Emeljanov Ruslan Jurevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Ickov Vadim Viktorovich, Moscow Institute of Physics and Technology
Abstract: 

The paper deals with a new multi­element processor platform to model the behavior of interacting dynamical systems – active wireless network. Each dynamical system modeling process, is associated with an active network node. The interaction between the dynamical systems is made through the transfer of information on the state of the system through radio channels between nodes of active network. Platform capabilities are demonstrated by an ensemble of oscillators Kuramoto. Describes the technique of modeling, experimental results and their analysis.   Download full version

DOI: 
10.18500/0869-6632-2015-23-2-21-36
References: 

1. http://en.wikipedia.org/wiki/Wireless_sensor_network 2. Dmitriev A.S., Kyarginsky B.Ye., Maximov N.A., Panas A.I., Starkov S.O. // Radiotekhnika. 2000. No 3. P. 9. (In Russian). 3. Dmitriev A.S., Kyarginsky B.Ye., Panas A.I., Starkov S.O. // Journal of Communications Technology and Electronics. 2001. Vol. 46, No2. P. 207. 4. Dmitriev A.S., Efremova E.V., Lazarev V.A., Gerasimov M.Yu. // Achievements of Modern Radioelectronics. 2013. Vol. 3. P. 19. (In Russian). 5. Winfree A. The geometry of biological time. New York: Springer, 1980. 6. Kuramoto Y. Chemical oscillations, waves and turbulence. Berlin: Springer-Verlag, 1984. 7. Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators // International Symposium on Mathematical Problems in Theoretical Physics / Ed. H. Araki. 1975. Vol. 39. P. 420. Berlin, Springer. 8. Strogatz S.H. From Kuramoto to Crawford: exploring the onset of synchronization in population sof coupled nonlinear oscillators // Physica D. 2000. Vol. 143. P. 1. 9. Ermentrout G.B. An adaptive model for synchrony in the firefly Pteroptyx malaccae // Journal of Mathematical Biology. 1991. Vol. 29. P. 571. 10. Wiesenfeld K., Colet P., Strogatz S.H. Frequency locking in Josephson arrays: connection with the Kuramoto model // Phys. Rev. E. 1998. Vol. 57, No 2. P. 1563. 11. Wang W., Kiss I.Z., Hudson J.L. Clustering of arrays of chaotic chemical oscillators by feedback and forcing // Phys. Rev. Lett. 2001. Vol. 86, No 21. P. 4954. 12. Tass P.A. Phase resetting in medicine and biology. Berlin: Springer, 1999. 13. Strogatz S.H., Abrams D.M., McRobie A. and others. Theoretical mechanics: Crowd synchrony on the Millennium Bridge// Nature. 2005. Vol. 438, No 7064. P. 43. 14. Popovych O.V., Maistrenko Yu.L., Tass P.A. Phase chaos in coupled oscillators // Phys. Rev. E. 2005. Vol. 71, No 6. P. 065201. 15. Maistrenko Yu.L., Popovych O.V., Tass P.A. Desynchronization and chaos in the Kuramoto model // Lecture notes in physics. 2005. Vol. 671. P. 285. 16. Abrams D., Strogatz S.H. Chimera states for coupled oscillators // Phys. Rev. Lett. 2004. Vol. 93, No 17. P. 174102.  

Short text (in English):