ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Filatov R. A., Koronovskii A. A., Hramov A. E. Nonlinear dynamics and chaos in the counterstreaming electron beams with virtual cathodes in vircator without external magnetic field. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 3, pp. 140-151. DOI: 10.18500/0869-6632-2012-20-3-140-151

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 136)
Language: 
Russian
Article type: 
Article
UDC: 
533.9

Nonlinear dynamics and chaos in the counterstreaming electron beams with virtual cathodes in vircator without external magnetic field

Autors: 
Filatov Roman Andreevich, Saratov State University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Abstract: 

Virtual cathode nonstationary dynamics has been numerically studied for the two counterstreaming electron beams. The variety of the virtual cathode oscillatory regimes has been discovered from regular to wide band chaotic oscillations. Connection between value of the largest Lyapunov exponent and output signal power has been revealed.

Reference: 
  1. Didenko AN, Krasik YE, Perelygin SF, Fomenko GP. Generation of powerful  microwave radiation by a relativistic electron beam in a triode system. Sov. Tech. Phys. Lett. 1979;5(6):321–324 (in Russian).
  2. Granatstein VL, Alexeeff I. High Power Microwave Sources, Artech House Microwave Library; 1987.
  3. Dubinov AE, Selemir VD. Electronic devices with virtual cathode. J. Commun. Technol. Electron. 2002;47(6):575 (in Russian).
  4. Kuzelev MV, Rukhadze AA, Strelkov PS. Plasma relativistic microwave electronics. Moscow: Bauman Moscow State Tech. Univ. Publ.; 2002. 544 p. (in Russian).
  5. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol. 1–2. Moscow: Fizmatlit; 2003. (in Russian).
  6. Bursian VR, Pavlov VI. On a particular case of the influence of a volume charge on the passage of an electron flow in a void. Journal of the Russian Physico-Chemical Society. 1923;55(1–3):71 (in Russian).
  7. Pierce JR. Limiting stable currents in electron beam in presence ions. J. Appl. Phys. 1944;15:721–726. DOI: 10.1063/1.1707378.
  8. Kuzelev MV, Rukhadze AA. Electrodynamics of Dense Electron Beams in Plasma. Moscow: Nauka; 1990. 322 p. (in Russian).
  9. Anfinogentov VG, Khramov AE. On the mechanism of occurrence of chaotic dynamics in a vacuum microwave generator with a virtual cathode. Radiophys. Quantum Electron. 1998;41(9):764–770. DOI: 10.1007/BF02677631.
  10. Anfinogentov VG, Khramov AE. Investigation of oscillations in an electron stream with a virtual cathode in a vircator and virtode. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(2-3):33–35 (in Russian).
  11. Privezencev A. P., Fomenko G. P. Complex dynamics of the charged-particle beam with virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):56–68 (in Russian).
  12. Gadetskii NP, Magda II, Naisteter SI, Prokopenko YV, Chumakov VI. The virtode: A generator using supercritical REB current with controlled feedback. Plasma Physics Reports. 1993;19:273–276.
  13. Selemir VD, Alyokhin BV, et al. Theoretical and experimental studies of virtual cathode microwave devices," in IEEE Transactions on Plasma Science. 1994;22(5):945–959. DOI: 10.1109/27.338312.
  14. Hramov AE, Koronovskii AA, Kurkin SA. Numerical study of chaotic oscillations in the electron beam with virtual cathode in the external non-uniform magnetic fields. Phys. Lett. A. 2010;374:3057–3066. DOI: 10.1016/j.physleta.2010.05.047.
  15. Rukhadze AA,  Stolbetsov SD, Tarakanov VP. Vircators (review). Journal of Communications Technology and Electronics. 1992;37(3):385–396 (in Russian).
  16. Benford J, Swegle JA, Schamiloglu E. High Power Microwaves. CRC Press, Taylor and Francis; 2007. 552 p. DOI: 10.1201/9781420012064.
  17. Egorov EN, Kalinin YuA, Levin YuI, et al. Vacuum generators of broadband chaotic oscillations based on nonrelativistic electron beams with virtual cathode. Bulletin of the Russian Academy of Sciences: Physics. 2005;69(12):1921–1924.
  18. Kalinin YuA, Koronovskii AA, Khramov AE, et al. Experimental and theoretical investigations of stochastic oscillatory phenomena in a nonrelativistic electron beam with a virtual cathode. Plasma Physics Reports. 2005;31(11):938–952. DOI: 10.1134/1.2131130.
  19. Koronovskii AA, Trubetskov DI, Hramov AE. Methods of Nonlinear Dynamics and Chaos Theory in Problems of Microwave Electronics. Vol. 2. Non-stationary and Chaotic Processes. Moscow: Fizmatlit; 2009. (in Russian).
  20. Marocchino A, Lapenta G, Evstatiev EG, Nebel RA, Park J. Two-dimensional electron-electron two-stream instability of an inertial electrostatic confinement device. Physics of Plasmas. 2006;13(10):102106. DOI: 10.1063/1.2356848.
  21. Nebel RA, Stange S, Park J, Taccetti JM, Murali SK, Garcia CE. Theoretical and experimental studies of kinetic equilibrium and stability of the virtual cathode in an electron injected inertial electrostatic confinement device. Phys. Plasmas 2005;12:012701. DOI: 10.1063/1.1829296.
  22. Gaelzer R, Ziebell LF, Vinas AF, Yoon PH, Ryu CM. Asymmetric solar wind electron superthermal distributions. The Astrophysical Journal. 2008;677:676. DOI: 10.1086/527430.
  23. Ryu CM, Ahn HC, Rhee T, Yoon PH, Ziebell LF, Gaelzer R, Vinas AF. Simulation of asymmetric solar wind electron distributions. Physics of Plasmas. 2009;16:062902. DOI: https://doi.org/10.1063/1.3085795.
  24. Uhm HS. A theory of two-stream instability in two hollow relativistic electron beams. Physics of Fluids B. Plasma Physics. 1993;5(9):3388–3398. DOI: 10.1063/1.860632.
  25. Carlsten BE, Bishofberger KA, Faehl RJ. Compact two-stream generator of millimeter- and submillimeter-wave radiation. Physics of Plasmas. 2008;15(7):073101. DOI: 10.1063/1.2938385.
  26. Zong-Jun S, Xiao-Pin T, Zi-Qiang Y, Feng L, Zheng L. Simulations of a two-stream backward-wave oscillator with a slot-hole structure. Chinese Physics B. 2012;21(1):018401. DOI: 10.1088/1674-1056/21/1/018401.
  27. Hendricks KJ, Adler R, Noggle RC. Experimental results of phase locking two virtual cathode oscillators. J. Appl. Phys. 1990;68(2):820–825. DOI: 10.1063/1.346762.
  28. Kalinin YA, Starodubov AV. Ultralow-voltage generator of chaotic microwave oscillations on counterpropagating electron beams. Tech. Phys. Lett. 2011;37:91–93. DOI: 10.1134/S1063785011010214.
  29. Dubinov AE, Efimova IA. Oscillations of the compressed state of electron beams in a vircator on counter flows. Electromagnetic waves and electronic systems. 2003;8(11-12):55–57 (in Russian).
  30. Barabanov VN, Dubinov AE, Loiko MV, et al. Beam discharge excited by distributed virtual cathode. Plasma Physics Reports. 2012;38(2):169–178. DOI: 10.1134/S1063780X12010023.
  31. Hramov AE, Kurkin SA, Egorov EN, Koronovskii AA, Filatov RA. The program package for the investigation and optimization of nonlinear non-stationary processes in the microwave generators with electron feedback. Matem. Mod. 2011;23(1):3–18 (in Russian).
  32. Kurkin SA, Koronovskii AA, Egorov EN, Levin JI, Filatov RA. Mathematical model and its numerical realization for the investigation and optimization of generators with electron feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(6):106–137 (in Russian). DOI: 10.18500/0869-6632-2010-18-6-106-137.
  33. Antonsen TM, Mondelli AA, Levush B, Verboncoeur JP, Birdsall CK. Advances in modelling and simulation of vacuum electron devices. Proceedings IEEE. 1999;87(5):804–839. DOI: 10.1109/5.757256.
  34. Birdsall CK, Langdon AB. Plasma Physics, Via Computer Simulation. New York: McGraw-Hill; 1985.
  35. Hockney R, Eastwood J. Numerical modeling by the particle method. Computer simulation using particles. McGraw Hill; 1981. 640 p.
  36. Kurkin SA, Koronovskii AA, Hramov AE. Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field. Plasma Phys. Rep. 2009;35:628–642. DOI: 10.1134/S1063780X09080029.
  37. Egorov EN, Kalinin YA, Koronovskii AA, et al. Microwave generation power in a nonrelativistic electron beam with virtual cathode in a retarding electric field. Tech. Phys. Lett. 2006;32:402–405. DOI: 10.1134/S1063785006050117.
  38. Egorov EN, Kalinin YuA, Koronovskii AA, Hramov AE. Analysis of the dependence of the microwave generation power of a low-voltage vircator on controlling parameters. Technical Physics. 2007;52(10):1387–1390. DOI: 10.1134/S1063784207100258.
  39. Makhankov VG, Pollak YuG. On the adequacy of mathematical modeling of complex systems by simplified systems (the method of macroparticles). Tech. Phys. 1976;XLVI(3):439 (in Russian).
  40. Roach P. Computational Fluid Dynamics. Albuquerque: Hermosa Publ.; 1972. 434 p.
  41. Benettin G, Galgani L, Strelcyn JM. Kolmogorov entropy and numerical experiments. Phys. Rev. A. 1976;14(6):2338–2345. DOI: 10.1103/PhysRevA.14.2338.
Received: 
13.04.2012
Accepted: 
11.05.2012
Published: 
31.07.2012
Short text (in English):
(downloads: 93)