ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Klochkov B. N., Reyman A. M. Nonlinear models of blood supply dynamics in tissue area. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 2, pp. 131-141. DOI: 10.18500/0869-6632-2010-18-2-131-141

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 123)
Language: 
Russian
Article type: 
Article
UDC: 
532.542:539.37:612.18

Nonlinear models of blood supply dynamics in tissue area

Autors: 
Klochkov Boris Nikolaevich, Institute of Applied Physics of the Russian Academy of Sciences
Reyman Aleksandr Mihajlovich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

A continual model of tissue blood supply has been suggested in this paper providing the existence of autostructures in the inhomogeneous blood distribution. Theoretical analysis including both analytical and numerical calculations has been carried out on the base of this model. The filtration variations of blood flow caused by medium activity (chemical reactions, nerve excitation) have been studied as well as self-organization processes accounting mechanisms of microvessel regulation.

Reference: 
  1. Tkachenko BI, Levtov VA, Moskalenko YuE, etc. Physiology of blood circulation: Regulation of blood circulation. Leningrad: Nauka; 1986. 639 p. (in Russian).
  2. Fung YC. Biodynamics. Circulation. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag; 1984.
  3. Koshelev VB, Kondashevskaia MV, Stavskaia ON, Vasil'ev NB, Timkina MI. Role of arteriolar heterogeneity on the development of the organ response of the vasculature of the skeletal muscles of the rat to constrictor stimuli. Journal of physiology of USSR. 1986;72(2):198–206 (in Russian).
  4. Bassingthwaighte JB, Van Beek JH. Lightning and the heart: fractal behavior in cardiac function. Proc. IEEE Transactions. 1988;76(6):693–699. DOI: 10.1109/5.4458. PMID: 21938081.
  5. Spaan JAE. Coronary blood flow. Dordrocht, The Netherlands: Kluwer Academic Press; 1991.
  6. Godik EE, Gulyaev YuV. Man «through the eyes of radiophysics». Radioengineering. 1991;8:51–62 (in Russian).
  7. Biorhythmic and self-organizing processes in the cardiovascular system. Theory. aspects and practice. meaning. Ed. Antonets VA, Matusova AP. N. Novgorod: Institute of Applied Physics Academy of Sciences of USSR; 1992. 217 p. (in Russian).
  8. Collective dynamics of excitations and structure formation in biological tissues. Collection of scientific papers. Ed. by Yakhno VG. Gorky: Institute of Applied Physics Academy of Sciences of USSR; 1988. 223 p. (in Russian).
  9. Autowave processes in systems with diffusion. Ed. by Grekhova MT. Collection of scientific papers. Gorky: Institute of Applied Physics Academy of Sciences of USSR; 1981. 285 p. (in Russian).
  10. Harvey W. Exercitatio anatomica de motu cordis et sangninis in animalins. Lond.; 1628 (Russian translation: Harvey V. Anatomical study of the movement of the heart and blood in animals. Moscow-Leningrad; 1948).
  11. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure nead necessary for supplying the tissue. J. Physiol. 1919;52:409–415. DOI: 10.1113/jphysiol.1919.sp001839.
  12. Krogh A. The anatomy and physiology of capillaries. New York: Haufer Publishing Co.; 1959.
  13. Architectonics of the bloodstream. Ed. Matyukhin VA. Novosibirsk: Nauka; 1982. (in Russian).
  14. Folkow B, Neil E. Circulation. New York, London, Toronto: Oxford University Press; 1971.
  15. Bithner HR. Modelling of fractal vessel systems. Fractals in the fundamental and applied sciences. Ed. Peitgen HO, Hennigues JM, Penedo LF. Amsterdam, New York, Oxford, Tokyo: Elsevier Science Publishers B.V., North-Holland. 1991:59.
  16. Mandelbrot BB. The Fractal Geometry of Nature. New York: WH. Freeman and Company, 1982. 468 p.
  17. Regirer SA. Lectures on biological mechanics. Pt. 1. Moscow: MSU Publ.; 1980. 144 p. (in Russian).
  18. Regirer SA, Utushkina NS, Shadrina NK. Blood flow in the capillary network of muscle tissue. Fluid Dyn. 1986;21:911–919. DOI: 10.1007/BF02628027.
  19. Rukhlis VE. Blood movement in the terminal vascular bed as filtration in a porous medium. Biomechanics of blood circulation, respiration and biological tissues. Riga. 1981:7 (in Russian).
  20. Fedotov SP, Markhasin VS. The instability of uniform blood-flow distribution in a microcirculatory system. Dokl Akad. Nauk SSSR. 1990;313(6):1497–1499.
  21. Nigmatulin RI. Fundamentals of the mechanics of heterogeneous media. Moscow: Nauka; 1978. 336 p. (in Russian).
  22. Nikolaevskii VN,  Basniev KS,  Gorbunov AT,  Zotov GA. The Mechanics of Saturated Porous Media. Moscow: Nedra; 1970. (in Russian).
  23. Buevich YuA, Zhelamsky SV, Izakov VYa, Yasnikov GP. On viscoelastic behavior of porous biological material. Physico-chemical hydrodynamics. Sverdlovsk: USU. 1985:34 (in Russian).
  24. Klochkov BN, Pelinovsky EN. Models of heterogeneous distribution of blood flow in tissues. Biorhythmic and Self-Organizing Processes in Cardiovascular System: Theoretic Aspects and Practical Meaning . Nizhni Novgorod: IPF RAN. 1992:33–42 (in Russian).
  25. Klochkov BN, Pelinovsky EN. Nonlinear models of blood flow in tissues. Mechanics of blood circulation. Biomechanics (Madralin, October 1991). Lecture notes of the Int. Centre of Biocybernetics (ICB) seminars. Warsaw: ICB. 1992;15:70.
  26. Klochkov BN, Pelinovsky EN, Reyman AM. Mathematical nonlinear model of inhomogeneous distribution blood flow in tissue. XV-th Congress of the International Society of Biomechanics (2-6 July, 1995, Jyvaskyla). Book of Abstracts. Finland. 1995:486–487.
  27. Pelinovskii EN, Fridman VE. Explosive instability in nonlinear waves in media with negative viscosity. Journal of Applied Mathematics and Mechanics. 1974;38:940–944.
  28. Samarskii AA,  Galaktionov VA,  Kurdyumov SP,  Mikhailov AP. Blow-up Regimes in Problems for Quasi-Linear Parabolic Equations. Moscow: Nauka; 1987. (in Russian).
  29. Klochkov BN, Reyman AM. Self-organizing processes of blood supply in biological tissues. Proc. of the Intern. School on Nonlinear Phenomena, Nonlinear Waves, Synchronisation and Structures, 5–16 Sept., 1995. Ed. by Rabinovich MI,. Sushchik MM, Shalfeev VD. Nizh. Novgorod: Nizhni Novgorod Gos. Univ.; 1995;2:111–118. (in Russian).
Received: 
17.03.2009
Accepted: 
03.11.2009
Published: 
30.04.2010
Short text (in English):
(downloads: 113)