ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Benedik A. I. Numerical simulation of the field emission diode oscillator with photonic crystal resonator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 2, pp. 63-71. DOI: 10.18500/0869-6632-2012-20-2-63-71

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 177)
Language: 
Russian
Article type: 
Article
UDC: 
621.385.1

Numerical simulation of the field emission diode oscillator with photonic crystal resonator

Autors: 
Benedik Andrej Ivanovich, Saratov State University
Abstract: 

Results of the theoretical analysis of the diode oscillator with a field-emission cathode placed in a photonic crystal resonator are considered. The analysis of conditions of self-excitation in the small signal approximation is carried out. The nonstationary numerical model of the oscillator based on the nonstationary equation of excitation of the resonator and the particle-in-cell method is developed. Numerical simulation of the processes of oscillation build-up is performed. The simulation shows rather high output power and efficiency for reasonable values of cathode current density.

Reference: 
  1. Trubetskov DI, Rozhnev AG, Sokolov DV. Lectures on Microwave Vacuum Microelectronics. Saratov: «College»; 1996. 238 p. (in Russian).
  2. Ives RL. Microfabrication of high-frequency vacuum electron devices. IEEE Trans. Plasma Sci. 2004;32(3):1277–1291. DOI: 10.1109/TPS.2004.827595.
  3. Rozhnev AG, Ryskin NM, Sokolov DV, Trubetskov DI, Han ST, Kim JI, Park GS. Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays. Phys. Plasmas. 2002;9(9):4020–4027. DOI: 10.1063/1.1497684.
  4. Han ST, Jeon SG, Shin YM, Jang KH, So JK, Kim JH, Chang SS, Park GS. Experimental investigations on miniaturized high-frequency vacuum electron devices. IEEE Trans. Plasma Sci. 2005;33(2):679–684. DOI: 10.1109/TPS.2005.844529.
  5. Srivastava V. THz vacuum microelectronic devices. J. Phys.: Conf. Series. 2008;114(1):012015. DOI: 10.1088/1742-6596/114/1/012015.
  6. Ryskin NM, Han ST, Jang KH, Park GS. Theory of the microelectronic traveling wave klystron amplifier with field-emission cathode array. Phys. Plasmas 2007;14(9):093106. DOI: 10.1063/1.2773703.
  7. Han ST. A high-frequency monotron employing two-dimensional, dielectric photonic-crystal, diode resonator. 35th Int. Conf. Infrared Millim. Terahertz Waves (IRMMW-THz). Rome, Italy; 2010. DOI: 10.1109/ICIMW.2010.5612858.
  8. Han ST. Numerical study on radio-frequency field emission from carbon nanotube film in a photonic crystal diode resonator. J. Korean Phys. Soc. 2011;59(1):141–144. DOI: 10.3938/jkps.59.141.
  9. Yokoo K, Ishihara T. Field emission monotron for THz emission. Int. J. Infrared Millim. Waves. 1997;18(6):1151–1159. DOI: 10.1007/BF02678223.
  10. Solntsev VA, Galdetsky AV, Kleev AI. Devices of vacuum microwave microelectronics with an average angle of flight. Lectures on microwave electronics and radiophysics. 10th winter school seminar. Book 1, Part I. Saratov: GOSUNTS «College»; 1996. p. 76 (in Russian).
  11. Solntsev VA. Nonlinear phenomena in vacuum microelectronic structures. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(1):54–74 (in Russian).
  12. Sirigiri JR, Kreischer KE, Machuzak J, Mastovsky I, Shapiro MA, Temkin RJ. Photonic-band-gap resonator gyrotron. Phys. Rev. Lett. 2001;86(24):5628–5631. DOI: 10.1103/PhysRevLett.86.5628.
  13. Jeon SG, Shin YM, Jang KH, Han ST, So JK, Joo YD, Park GS. High order mode formation of externally coupled hybrid photonic-band-gap cavity. Appl. Phys. Lett. 2007;90(2):021112. DOI: 10.1063/1.2431451.
  14. Jang KH, Jeon SG, Kim JI, Won JH, So JK, Bak SH, Srivastava A, Jung SS, Park GS. High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron. Appl. Phys. Lett. 2008;93(21):211104. DOI: 10.1063/1.3037026.
  15. Liu X, Lei H, Yu T, Feng J, Liao F. Characteristics of terahertz slow-wave system with two-dimensional photonic band-gap structure. Optics Communications. 2008;281(1):102–107. DOI: 10.1016/j.optcom.2007.09.013.
  16. Gong Y, Yin H, Wei Y, Yue L, Deng M, Lu Zh, Xu X, Wang W, Liu P, Liao F. Study of traveling wave tube with folded-waveguide circuit shielded by photonic crystals. IEEE Trans. Electron Devices. 2010;57(5):1137–1145. DOI: 10.1109/TED.2010.2043176.
  17. Shevchik VN. Basics of microwave electronics. Moscow: Sov. radio; 1959. 307 p. (in Russian).
  18. Gaiduk VI, Palatov KI, Petrov DM. Physical Foundations of Microwave Electronics. Moscow: Sov. Radio; 1971. 600 p. (in Russian).
  19. Vainshtein LA, Solntsev VA. Lectures on Microwave Electronics. Moscow: Sov. Radio; 1973. 400 p. (in Russian).
  20. Shevchik VN, Trubetskov DI. Analytical methods of calculation in microwave electronics. Moscow: Sov. radio; 1970. 584 p. (in Russian).
  21. Birdsall CK, Langdon AB. Plasma Physics via Computer Simulation. New York: McGraw-Hill; 1985. 
  22. Titov VN, Volkov DV, Jakovlev AV, Ryskin NM. Reflex klystron as an example of a self­-oscillating delayed feedback system. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(6):138–158 (in Russian). DOI: 10.18500/0869-6632-2010-18-6-138-158.
  23. Ryskin NM, Titov VN, Yakovlev AV. Nonstationary nonlinear discrete model of a coupled-cavity traveling-wave-tube amplifier. IEEE Trans. Electron Devices. 2009;56(5):928–934. DOI: 10.1109/TED.2009.2016690.
  24. Vainshtein LA, Vakman DE. Frequency separation in the theory of oscillations and waves. Moscow: Nauka; 1983. 288 p. (in Russian).
  25. Milne WI, Teo KBK, Minoux E, et al. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B. 2006;24(1):345–348. DOI: 10.1116/1.2161223.
  26. Calderon-Colon X, Geng H, Gao D, An L, Cao G, Zhou O. A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology. 2009;20:325707. DOI: 10.1088/0957-4484/20/32/325707.
  27. Shiffler D, Zhou O, Bower C, LaCour M, Golby K. A high-current, large-area, carbon nanotube cathode. IEEE Trans. Plasma Sci. 2004;32(5):2152–2154. DOI: 10.1109/TPS.2004.835519.
Received: 
22.02.2012
Accepted: 
22.02.2012
Published: 
29.06.2012
Short text (in English):
(downloads: 72)