ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Kazancev V. B., Vorobev A. V. Oscillatory instability and spontaneous subthreshold oscillations in a network of diffusively coupled calcium oscillators. Izvestiya VUZ, 2009, vol. 17, iss. 2, pp. 123-137. DOI: https://doi.org/10.18500/0869-6632-2009-17-2-123-137

Language: 
Russian

Oscillatory instability and spontaneous subthreshold oscillations in a network of diffusively coupled calcium oscillators

Autors: 
Kazancev Viktor Borisovich, Institute of Applied Physics of the Russian Academy of Sciences
Vorobev Artem Viktorovich, Federal state budgetary educational institution of higher professional education "Nizhny Novgorod state University named N. And.Lobachevsky"
Abstract: 

The paper is devoted to the investigation of the dynamics of a network of interacting astrocytes. The astrocytes represent brain glial cells capable to generate chemical activity signals (calcium pulses). Similarly to nerve cells (neurons) the astrocytes form networksof interacting units coupled by means of gap junctions. The junctions represent special protein channels providing the di?usion of chemically active species between neighboring cells. It is believed that calcium signals in astrocytes can regulate the e?ciency of synaptic transmission in neighboring neuronal cells. In the present paper we investigate the processes of oscillatory activity generation in a one-dimensional network of coupled astrocytes. The dynamics of local cell is described by the third order nonlinear di?erential equation system that has been obtained from the detailed description of biochemical kinetics in the cell (de Young and Keizer, 1992; Li and Rinzel, 2003; Ullah, et al., 2006) The model accounting for the di?usive coupling represent a three-component reactiondi?usion network with single di?using component. It is proven that there exists a critical value of di?usion coe?cient above which the oscillatory instability at 0.1 Hz frequency develops and spontaneous low-amplitude quasisinusoidal oscillations (of 0.05 mM) appear. Corresponding eigenvalue spectrum is obtained and analyzed. It is found that further increase of the coupling coe?cients leads to the appearance of multi-frequency mode with the modulation of the oscillation amplitude and spontaneous calcium pulse generation.

Key words: 
DOI: 
10.18500/0869-6632-2009-17-2-123-137
References: 

1. Николлс Дж., Мартин Р., Валлас Б. Фукс П. От нейрона к мозгу. М.: Изд-во УРСС. 2003. 672 C. 2. Рубин А.Б. Биофизика: В 2 т. М.: Книжный дом «Университет» , 2000. 486 c. 3. Principles of Neural Science / Eds. E.R. Kandel, J.H. Schwartz, T.M. Jessell. Third Edition. Prentice-Hall Intern. Inc. 1991. 1135 p. 4. Scott A. Neuroscience: a mathematical premier. Springer-Verlag, Berlin, 2002. 5. Izhikevich E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, 2007. 6. Verkhratsky A., Butt A. Glial Neurobiology, Wiley, 2007. 7. De Young G.W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration //Proc. Natl. Acad. Sci. USA. 1992. Vol. 89. P. 9895. 8. Li Y., Rinzel J. Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin–Huxley-like formalism //J. Theor. Biol. 1994. Vol. 166. P. 461. 9. Ullah G., Jung P., Cornell-Bell A.H. Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration //Cell Calcium. 2006. Vol. 39. P. 197. 10. Bennett M.V.L., Jorge E.C., Bukauskas F.F., Saez J.C.  ? New roles for astrocytes: Gap junction hemichannels have something to communicate //Trends in Neurosciences. 2003. Vol. 26, No 11. P. 610. 11. Timofeeva Y., Coombes S.. Wave bifurcation and propagation failure in a model of Ca2+ release // J. Math. Biol. 2003. Vol. 47, No 3. P. 249. 12. Nadkarni S., Jung P. Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? // Phys. Rev. Lett. 2003. Vol. 91. P. 268101. 13. Volman V., Ben-Jacob E., Levine H. The astrocyte as a gatekeeper of synaptic information transfer // Neural Comp. 2007. Vol. 19. P. 303. 14. Halassa M.M., Fellin T., Takano H., Dong J.-H., Haydon P.G. Synaptic islands defined by the territory of a single astrocyte // J. Neurosci. Vol. 27, No 24. P. 6473. 15. Nekorkin V.I., Velarde M.G. Synergetic Phenomena in Active Lattices. Berlin: Springer, 2002. 16. CRC Standard Mathematical Tables and Formulae / Ed. D. Zwillinger. Boca Raton, FL: CRC Press, 1995. 17. Makarov V.A., Nekorkin V.I., Velarde M.G. Spiking behavior in a noise-driven system combining oscillatory and excitatory properties // Phys. Rev. Lett. 2001. Vol. 86, No 15. P. 3431.

Short text (in English): 
Full text: