ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Sominski G. G., Tumareva T. A. Prospective field emitters made from carbon nanotubes, graphene and semiconductors recent developments. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 2, pp. 74-93. DOI: 10.18500/0869-6632-2015-23-2-74-93

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 112)
Language: 
Russian
Article type: 
Article
UDC: 
537.5

Prospective field emitters made from carbon nanotubes, graphene and semiconductors recent developments

Autors: 
Sominski G. G., Peter the Great St. Petersburg Polytechnic University
Tumareva Tatjana Alekseevna, Peter the Great St. Petersburg Polytechnic University
Abstract: 

The article presents the latest published in the literature data on the development and research of promising field emitters made from carbon nanotubes, graphene and semiconductors. The possibilities of obtaining high densities and currents of field emission, as well as opportunities to ensure long-term operation of emitters in high-voltage electron devices are analyzed. 

Reference: 
  1. Tumareva T.A., Sominski G.G. Development and improvement of field emitters based on carbon-containing materials // Izvestiya vuzov. Prikladnaya nelineynaya dinamika. 2009. Vol. 17, No 3. S. 17. (In Russian).
  2. Egorov N.V., Sheshin E.P. Field emission. Principles and devices. St. Petersburg: Intellect, 2011. 704 s. (In Russian).
  3. Sinitsyn N.I., Gulyaev Yu.V., Devyatkov N.D. et al. Carbon nanocluster structures - one of the materials of emission electronics of the future // Radiotechnika. 2000. No 2. P. 9.
  4. Sheshin E.P. Surface structure and field emission properties of carbon materials. M.: Izd. MFTI, 2001, 288 p. (In Russian).
  5. Eletskiy A.V. Carbon nanotubes and their emission properties // Uspekhi Fizicheskikh Nauk. 2002. Vol. 172. P. 401.
  6. Eletskiy A.V. Cold field emitters based on carbon nanotubes // Uspekhi Fizicheskikh Nauk. 2010. Vol. 180, No 9. P. 897.
  7. Fursey G.N., Novikov D.V., Dyuzhev G.A. et al. The field emission from carbon nanotubes // Appl. Surf. Sci. 2003. Vol. 215. P. 135.
  8. Andreev K.V., Grigoriev Yu.A., Milyutin D.D. et al. Pulsed field emission sources of electrons based on carbon of micro and nanostructures for beam microwave devices: numerical and experimental investigation. // In: Proceedings of 13th Winter School-Seminar on Microwave Electronics and Radiophysics (January 31 – February 5, 2006). Saratov. 2006. Izd. Gos.UNC «Kolledzh». S .64. (In Russian).
  9. Lahiri I., Seelaboyina R., Hwang J.Y., Banerjee R., Choi W. Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate // Carbon. 2010. Vol. 48. P. 1531.
  10. Lahiri I., Wong J., Zhou Z., Choi W. Ultra-high current density carbon nanotube field emitter structure on three-dimensional micro-channeled copper // Appl. Phys Lett. 2012. Vol. 101. 063110.
  11. Li C., Zhang Y., Mann M., Hasko D., Lei W., Wang B., Chu D., Pribat D., Amaratunga G.A.J., and Milne W.I. High emission current density, vertically aligned carbon nanotube mesh, field emitter array // Appl. Phys. Lett. 2010. Vol. 97. 113107.
  12. Chen Z., Zhang Q., Lan P., Zhu B., Yu T., Cao G. and den Engelsen D. Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walled carbon nanotube arrays with high adherence strength // Nanotechnology. 2007. Vol. 18. 265702.
  13. Yuning Sun, Dong Hoon Shin, Ki Nam Yun, Yeon Mo Hwang, Yenan Song, Guillaume Leti, Seok-Gy Jeon, Jung-Il Kim, Yahachi Saito, and Cheol Jin Lee. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing // AIP Advances. 2014. Vol. 4. 077110.
  14. Pandey S., Rai P., Patole S, Gunes F., won G-D., Yoo J-B., Nikolaev P., and Arepalli1 S. Improved electron field emission from morphologically disordered monolayer graphene // Appl. Phys. Lett. 2012. Vol. 100. 043104.
  15. Koh A.T., Foong Y.M., Pan L., Sun Z., and Chua D.H.C. Effective large-area free-standing graphene field emitters by electrophoretic deposition // Appl. Phys. Lett. 2012. Vol. 101. 183107.
  16. Song Y., Shin D.H., Song Y-H., Saito Y., and Lee1 C.J. High performance field emission properties of graphite nanoplatelet field emitters // Appl. Phys. Lett. 2013. Vol. 103. 073112.
  17. Zhicheng Yang, Qing Zhao, Yongxi Ou, Wei Wang, Heng Li, and Dapeng Yua. Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays // Appl. Phys. Lett. 2012. Vol. 101. 173107.
  18. Ye D., Moussa S., Ferguson J.D., Baski A.A., and El-Shall M.S. High efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays // NANO Letters. 2012. Vol. 12. P. 1265.
  19. Devarapalli R.R., Kashid R.V., Deshmukh A.B., Sharma P., Das M.R., More M.A. and Shelke M.V. High efficiency electron field emission from protruded graphene oxide nanosheets on sharp silicon nanowires // J. of Materials Chemistry C. 2013. Vol. 1. P. 5040.
  20. Liu J., Zeng B., Wu Z., Zhu J., and Liu X. Improved field emission property of graphene paper by plasma treatment // Appl. Phys. Lett. 2010. Vol. 97. 033109.
  21. Liu J., Zeng B., Wang W., Li N., Guo J., Fang Y., Deng J., Li J., and Hao C. Graphen electron cannon: High-current edge emission from aligned graphene sheets // Appl. Phys. Lett. 2014. Vol. 104. 023101.
  22. Kvashnin G.G., Sorokin P.B., Bruning J.W. and Chernozatonskii L.A. The impact of edges and dopants on the work function of graphene nanostructures: The way to high electronic emission from pure carbon medium // Appl. Phys. Lett. 2013. Vol. 102. 183112.
  23. Palnitkar U.A., Kashid R.V., More M.A., Joag D.S., Panchakarla L.S., and Rao1 C.N.R. Remarkably low turn-on field emission in undoped, nitrogen-doped, and boron-doped graphene // Appl. Phys. Lett. 2010. Vol. 97. 063102.
  24. Fang X., Bando Y. et al. Inorganic semiconductor nanostructures and their field-emission applications // J. of Materials Chemistry. 2008. Vol. 18. P. 509.
  25. Givargizov E.I. Controllable whisker growth and creation of single-crystal whisker probes // Crystallography Reports. 2006. Vol. 51, No 5. P. 947.
  26. Huang G.S., Wu X.L., Cheng Y.C., et al. Fabrication and field emission property of a Si nanotip array // Nanotechnology. 2006. Vol. 17, No 22. P. 5573.
  27. Bocharov G.S., Eletskii A.V. Effect of screening on the emissivity of field electron emitters based on carbon nanotubes // Tech. Phys. 2005. Vol. 50, No 7. P. 944.
  28. Sominski G.G., Sezonov V.E., Taradaev E.P., Tumareva T.A., Zadiranov Yu.M., Kornishin S.Yu., Stepanova A.N. Field emitters of a new type for high-voltage electron devices. // Radiophysics and Quantum Electronics, 2015, in print.
  29. Li Y.B., Bando Y., Golberg D. ZnO nanoneedles with tip surface perturbations: Excellent field emitters // Appl. Phys. Lett. 2004. Vol. 84, No 18. P. 3603.
  30. Wu Z.S., Deng S.Z., et al. Needle-shaped silicon carbide nanowires: Syntesis and field electron emission properties // Appl. Phys. Lett. 2002. Vol. 80, No 20. P. 3829.
  31. Alivov Y., Klopfer M., and Molloi S. Tio2 nanotubes as a cold cathode for x-ray generation // Appl. Phys. Lett. 2010. Vol. 96. 243502.
  32. Alivov Y., Klopfer M., and Molloi S. Enhanced field emission from clustered TiO2 nanotube arrays // Appl. Phys. Lett. 2011. Vol. 99. 063104.
Received: 
24.03.2015
Accepted: 
24.03.2015
Published: 
31.07.2015
Short text (in English):
(downloads: 89)