ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Podlazov A. V. Solution of two-dimensional self-organized critical manna model. Izvestiya VUZ, 2013, vol. 21, iss. 6, pp. 69-87. DOI: https://doi.org/10.18500/0869-6632-2013-21-6-69-87

Language: 
Russian

Solution of two-dimensional self-organized critical manna model

Autors: 
Podlazov Andrej Viktorovich, Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Abstract: 

We propose a full solution for Manna model – two-dimensional conservative sandpile model with the rules of grains redistribution isotropic at the average. Indices of the probability distributions of avalanches main characteristics (size, area, perimeter, duration, topplings multiplicity) are determined for this model both from theory and from simulations.  The solution bases on the spatiotemporal decomposition of avalanches described in terms of toppling layers and waves. The motion of grains is divided into directed and undirected types. The former is treated as the dynamics of active particles with some physical properties described.

Key words: 
DOI: 
10.18500/0869-6632-2013-21-6-69-87
References: 

1. Bak P., Tang C., Wiesenfeld K. Self-organized criticality// Phys. Rev. A. 1988. Vol. 38, No 1. P. 364. 2. Бак П. Как работает природа: Теория самоорганизованной критичности/ Пер. с англ./ Синергетика: От прошлого к будущему. No66. М.: Либроком, 2013. 276 с. 3. Manna S.S. Two-state model of self-organized criticality// J. Phys. A: Math. Gen. 1991. Vol. 24. P. L363. 4. Milshtein E., Biham O., Solomon S. Universality classes in isotropic, Abelian, and non-Abelian sandpile models// Phys. Rev. E. 1998. Vol. 58, No 1. P. 303. 5. Zhang Y-C. Scaling theory of self-organized criticality// Phys. Rev. Lett. 1989. Vol. 63, No 5. P. 470. 6. Ben-Hur A., Biham O. Universality in sandpile models// Phys. Rev. E. 1996. Vol. 53, No 2. P. R1317. 7. Малинецкий Г.Г., Подлазов А.В. Сравнение двумерных изотропных консервативных самоорганизованно-критических моделей типа кучи песка// Вестник МГТУ им. Н.Э.Баумана. Естественные науки. Спец. выпуск No 2 «Математическое моделирование в технике». 2012. С. 119. 8. Pietronero L., Vespignani A., Zapperi S. Renormalization scheme for self-organized criticality in sandpile models// Phys. Rev. Lett. 1994. Vol. 72, No 11. P. 1690. 9. Vespignani A., Zapperi S., Pietronero L. Renormalization approach to the self- organized critical behavior of sandpile models// Phys. Rev. E. 1995. Vol. 51, No 3. P. 1711. 10. D ??az-Guilera A. Dynamic renormalization group approach to self-organized critical phenomena// Europhys. Lett. 1994. Vol. 26, No 3. P. 177. 11. Corral A., D  ?  ??az-Guilera A. Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality// Phys. Rev. E. 1997. Vol. 55, No 3. P. 2434. 12. Dhar D., Ramaswamy R. Exactly solved model of self-organized critical phenomena// Phys. Rev. Lett. 1989. Vol. 63, No 16. P. 1659. 13. Pastor-Satorras R., Vespignani A. Universality classes in directed sandpile models//J. Phys. A: Math. Gen. 2000. Vol. 33. P. L33. 14. Paczuski M., Bassler K.E. Theoretical results for sandpile models of SOC with multiple topplings// Phys. Rev. E. 2000. Vol. 62, No 4. P. 347. 15. Kloster M., Maslov S., Tang C. Exact solution of stochastic directed sandpile model//Phys. Rev. E. 2001. Vol. 63, No 2. P. 026111. 16. Feder H.J.S., Feder J. Self-organized criticality in a stick-slip process// Phys. Rev. Lett. 1991. Vol. 66, No 20. P. 2669. 17. Подлазов А.В. Двумерные самоорганизованно критические модели типа кучи песка с анизотропной динамикой распространения активности// Известия вузов. Прикладная нелинейная динамика. 2012. Т. 20, No 6. C. 25. 18. Lubeck S., Usadel K.D.  ? Bak–Tang–Wiesenfeld sandpile model around upper critical dimension// Phys. Rev. E. 1997. Vol. 56, No 5. P. 5138. 19. Chessa A., Vespignani A., Zapperi S. Critical exponents in stochastic sandpile models// Comput. Phys. Commun. 1999. Vol. 121-122. P. 299. 20. Lubeck S.  ? Moment analysis of the probability distributions of different sandpile models// Phys. Rev. E. 2000. Vol. 61, No 1. P. 204. 21. Lubeck S., Usadel K.D.  ? Numerical determination of the avalanche exponents of the Bak–Tang–Wiesenfeld model// Phys. Rev. E. 1997. Vol. 55, No 4. P. 4095. 22. Kadanoff L.P., Nagel S.R., Wu L., Zhou S. Scaling and universality in avalanches//Phys. Rev. A. 1989. Vol. 39, No 12. P. 6524. 23. Ivashkevich E.V., Ktitarev D.V., Priezzhev V.B. Waves of topplings in an Abelian sandpile// Physica A. 1994. Vol. 209. P. 347.  

Short text (in English):