ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Mazhirina Y. A., Konjuhov A. I., Melnikov L. A. Supercontinuum spectrum smoothing in the microstructure fibers with periodically modulated diameter. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 1, pp. 70-80. DOI: 10.18500/0869-6632-2008-16-1-70-80

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 130)
Language: 
Russian
Article type: 
Article
UDC: 
537.876.23:537.877:621.372.8

Supercontinuum spectrum smoothing in the microstructure fibers with periodically modulated diameter

Autors: 
Mazhirina Yulia Aleksandrovna, Yuri Gagarin State Technical University of Saratov
Konjuhov Andrej Ivanovich, Saratov State University
Melnikov Leonid Arkadevich, Yuri Gagarin State Technical University of Saratov
Abstract: 

The results of numerical modelling of the supercontinuum generation in microstructure fibers excited by femtosecond multi-soliton pulses are presented. Pulse dynamics is modelled using the extended Schrodinger equation, in which the dispersion and nonlinear coefficient for given fiber are calculated by plane wave method. It is more easy to achieve the phase-matching conditions for the dispersive wave generation in the fibers with periodical modulated diameter. It is shown that the periodical modulation of fiber diameter allows to control the spectrum of multi-soliton pulses that leads to spectral broadening and disappearance of the gap between spectra of soliton and dispersive wave.

Key words: 
Reference: 
  1. Zheltikov AM. Let there be white light: supercontinuum generation by ultrashort laser pulses. Phys. Usp. 2006;49(6):605–628. DOI: 10.1070/PU2006v049n06ABEH005975.
  2. Genty G, Lehtonen M, and Ludvigsen H. Enhanced bandwidth of supercontinuum generated in microstructured fibers. Opt. Express. 2004;12(15):3471–3480. DOI: 10.1364/opex.12.003471.
  3. Mori K, Takara H, Kawanishi S. Analysis and design of supercontinuum pulse generation in a single-mode optical fiber. J. Opt. Soc. Am. B. 2001;18(12):1780–1792. DOI: 10.1364/JOSAB.18.001780.
  4. Hori T, et al. Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. Opt. Express. 2004;12(2):317–324. DOI: 10.1364/OPEX.12.000317.
  5. Li Y, et al. Interaction of supercontinuum and Raman solitons with microstructure fiber gratings. Opt. Express. 2005;13(3):998–1007. DOI: 10.1364/OPEX.13.000998.
  6. Lu F, Deng Y, Knox WH. Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers. Opt. Lett. 2005;30(12):1566–1568. DOI: 10.1364/OL.30.001566.
  7. Cristiani I, et al. Dispersive wave generation by solitons in microstructured optical fibers. Opt. Express. 2003;12(1):124–135. DOI: 10.1364/OPEX.12.000124.
  8. Nikolov NI, et al. Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing. J. Opt. Soc. Am. B. 2003;20(11):2329–2337. DOI: 10.1364/JOSAB.20.002329.
  9. Bauer RG, Melnikov LA. Multi-soliton fission and quasi-periodicity in a fiber with a periodically modulated core diameter. Opt. Commun. 1995;115(1–2):190–198. DOI: 10.1016/0030-4018(94)00618-5.
  10. Hasegawa A, Kodama Y. Guiding-center solitons. Phys. Rev. Lett. 1991;66(2):161–164. DOI: 10.1103/PhysRevLett.66.161.
  11. Akhmediev N, Ankevich A. Solitons, Nonlinear Pulses and Beams. Moscow: Fizmatlit; 2003. 304 p. (in Russian).
  12. Mollenauer L, Gordon J, Islam M. Soliton propagation in long fibers with periodically compensated loss. IEEE J. Quant. Electron. 1986;22(1):157–173. DOI: 10.1109/JQE.1986.1072858.
  13. Nelson LE, Jones DJ, Tamura K, Haus HA, Ippen EP. Ultrashort-pulse fiberring lasers. Appl. Phys. B. 1997;65:277–294. DOI: 10.1007/s003400050273.
  14. Akhmanov SA, Koroteev NI. Methods of Nonlinear Optics in Light Scattering Spectroscopy. Moscow: Nauka; 1981. 540 p. (in Russian).
  15. Snyder A, Love J. Optical Waveguide Theory. Boston: Springer; 1983. 738 p. DOI: 10.1007/978-1-4613-2813-1.
  16. The Dispersion Characteristics of TF10 Glass are Similar to those of SF6 Glass (Schott AG, Germany) [Electronic resource]. Available from: http://www.glassbank.ru/eng.
  17. Broeng J, et al. Photonic crystal fibers: A new class of optical waveguides. Opt. Fib. Tech. 1999;5(3):305–330. DOI: 10.1006/ofte.1998.0279.
  18. Agrawal G. Nonlinear Fiber Optics. Academic Press; 1989. 648 p.
  19. Feng X, Mairaj AK, Hewak DW, Monro TM. Nonsilica glasses for holey fibers. J. Lightwave Tech. 2005;23(6):2046–2054. DOI: 10.1109/JLT.2005.849945.
  20. Golovchenko EA, Dianov EM, Prokhorov AM, and Serkin VN. Decay of optical solitons. JETP Lett. 1985;42(2):87.
  21. Tai K, Hasegawa A, Bekki N. Fission of optical solitons induced by stimulated Raman effect. Opt. Lett. 1988;13(5):392–394. DOI: 10.1364/ol.13.000392.
Received: 
24.12.2007
Accepted: 
24.12.2007
Published: 
29.02.2008
Short text (in English):
(downloads: 100)