ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)

Cite this article as:

Hromova I. A., Melnikov L. A. The eigenwaves of the anisotropic photonic crystals: the calculation method and its features, the symmetry of the dispersion surface of the 2d crystal. Izvestiya VUZ, 2008, vol. 16, iss. 1, pp. 81-98. DOI:


The eigenwaves of the anisotropic photonic crystals: the calculation method and its features, the symmetry of the dispersion surface of the 2d crystal

Hromova Irina Anatolevna, Saratov State University
Melnikov Leonid Arkadevich, Yuri Gagarin State Technical University of Saratov

Fully vectorial plane wave method is presented aimed the calculation of the electromagnetic eigenwaves in periodical dielectric media having arbitrary geometry and dimension with both isotropic and anisotropic elements. Using this method the e?ect of the reorientation of molecules of anisotropic material in photonic crystal on the dispersion surface is investigated.

Key words: 

1. Joannopoulos J.D., Villeneuve P.R. and Fan S. Photonic crystals: putting a new twist on light // Nature. 1997. Vol. 386. P. 143. 2. Ho K.M., Chan C.T., and Soukoulis C.M. Existence of a photonic gap in periodic dielectric structures // Phys. Rev. Lett. 1990. Vol. 65. P. 3152. 3. Larsen T.T. Optical devices based on liquid crystal photonic bandgap fibers // Optics Express. 2003. Vol. 11, No 20. P. 2589. 4. Alkeskjold T.T. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers // Optics Express. 2004. Vol. 12, No 24. P. 5857. 5. Du F., Lu Y.-Q., and Wu S.-T. Electrically tunable liquid-crystal photonic crystal fiber // Applied Physics Letters. 2004. Vol. 85, No 12. P. 2181. 6. Kotynski R. et al. Modeling of polarization behaviour of LC filled photonic crystal fibers // Proceedings Symposium IEEE/LEOS Benelux Chapter, 315-319, Dec. 2004, Ghent, Belgium. 7. Scolari L. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers // Optics Express. 2005. Vol. 13, No 19. P. 7483. 8. Seydou F. et al. Numerical computation of the Green’s function for two-dimensional finite-size photonic crystals of infinite length // Optics Express. 2006. Vol. 14, No 23. P. 11362. 9. Busch K. et al. The Wannier function approach to photonic crystal circuits // Journal of Physics: Condensed Matter. 2003. No 15. P. 1233. 10. Johnson S.G., Joannopoulos J.D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis // Optics Express. 2001. Vol. 8, No 3. P. 173. 11. Guo Sh., Albin S. Simple plane wave implementation for photonic crystal calculations // Optics Express. 2003. Vol. 11, No 2. P 167. 12. Lokke M. et al. Group-theoretical description of the triangular air-silica photonic crystal out-of-plane propagation // Optics Express. 2004. Vol. 12, No 25. 13. Melnikov L., Khromova I., Sherbakov A., Nikishin N. Soft-glass hollow core photonic crystal fibers // Proc. SPIE. 2005. 5950. P. 243. 14. Hsue Y.-Ch., Yang T.-J. A novel view of plane wave expansion method in photonic crystals // 15. Kotynski R. Photonic crystal fibers with material anisotropy // Optical and Quantum Electronics. 2005. No 37. P. 253. 16. Sun J., Chan C.C. Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers // Optics Letters. 2007. Vol. 32, No 14. P. 1989. 17. Couny F., Benabid F. and Light P.S. Large-pitch kagome-structured hollow-core photonic crystal fiber // Optics Letters. 2006. Vol. 31, No 24. P. 3574. 18. Khromova I.A., Melnikov L.A.Liquid crystal infiltrated photonic bandgap fibers: dispersion and mode characteristics calculation // Technical Digest of Conference «LOYS-2006», 2006 ThS7-03, 99; 19. Khromova I.A., Melnikov L.A.Dispersion Properties of photonic crystals and photonic band gap fibers with anisotropic elements // Proceedings of 13th Student Seminar on Microwave Applications of Novel Physical Phenomena, 38-40, 2006.

Short text (in English): 
Full text: