Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Образец для цитирования:

Кащенко С. А. Динамика двухкомпонентных параболических систем шредингеровского типа //Изв. вузов. ПНД. 2018. Т. 26, вып. 5. С. 81-100. DOI: https://doi.org/10.18500/0869-6632-2018-26-5-81-100

Опубликована онлайн: 
31.10.2018
Язык публикации: 
русский
УДК: 
517.9

Динамика двухкомпонентных параболических систем шредингеровского типа

Авторы: 
Кащенко Сергей Александрович, Ярославский государственный университет имени П.Г.Демидова (ЯрГУ)
Аннотация: 

Предмет исследования. Рассматривается локальная динамика важного для приложений класса двухкомпонентных нелинейных систем параболических уравнений. Эти системы содержат малый параметр, который фигурирует в коэффициентах диффузии и характеризует «близость» исходной системы параболического типа к гиперболической системе. При достаточно естественных условиях на коэффициенты линеаризованного уравнения реализуются критические в задаче об устойчивости стационара случаи. Новизна. Важным является то обстоятельство, что эти критические случаи имеют бесконечную размерность: бесконечно много корней характеристического уравнения стремятся к мнимой оси при стремлении к нулю малого параметра. Специфика всех рассматриваемых критических случаев характерна для систем шредингеровского типа и, в частности, для классического уравнения Шредингера. Эти особенности связаны с расположением корней характеристического уравнения. В статье исследуются три наиболее важных случая. Отметим, что они принципиально отличаются друг от друга. Это отличие в своей основе обусловлено наличием в каждом из рассматриваемых случаев специфических резонансных соотношений. Именно эти соотношения определяют структуру нелинейных функций, входящих в нормальные формы. Методы исследования. Предложен алгоритм нормализации, то есть сведения исходной системы к бесконечной системе обыкновенных дифференциальных уравнений для медленно меняющихся амплитуд. Полученные результаты. Выделены ситуации, когда соответствующие системы удается компактно записать в виде краевых задач со специальными нелинейностями. Эти краевые задачи играют роль нормальных форм для исходных параболических систем. Их нелокальная динамика определяет поведение решений исходной системы с начальными условиями из некоторой достаточно малой и не зависящей от малого параметра окрестности состояния равновесия. В качестве важных приложений рассмотрены скалярные комплексные параболические уравнения шредингеровского типа. Выводы. Задача о локальной динамике двухкомпонентных параболических систем шредингеровского типа сводится к изучению нелокального поведения решений специальных нелинейных эволюционных уравнений.    

DOI: 
10.18500/0869-6632-2018-26-5-81-100
Краткое содержание: 
Полный текст в формате PDF: