ФАЗОВАЯ ДИНАМИКА ВОЗБУЖДАЕМЫХ КВАЗИПЕРИОДИЧЕСКИХ АВТОКОЛЕБАТЕЛЬНЫХ ОСЦИЛЛЯТОРОВ


Образец для цитирования:

Кузнецов А. П., Сатаев И. Р., Тюрюкина Л. В. ФАЗОВАЯ ДИНАМИКА ВОЗБУЖДАЕМЫХ КВАЗИПЕРИОДИЧЕСКИХ АВТОКОЛЕБАТЕЛЬНЫХ ОСЦИЛЛЯТОРОВ // Известия вузов. Прикладная нелинейная динамика.2010 Т. 18, вып. 4. С. 17-32. DOI: 10.18500/0869-6632-2010-18-4-17-32


В фазовом приближении исследуется синхронизация внешней силой двух связанных фазовых осцилляторов. Рассмотрены и сравниваются режимы, когда автономные осцилляторы демонстрируют захват частот и биений с несоизмеримыми частотами. Представлены карты Ляпунова, обсуждаются возможные типы режимов возбуждаемой системы. Выявлены и классифицированы различные типы двухчастотных торов. Предложена модификация метода карт динамических режимов для определения областей существования различных резонансных двухчастотных торов.

 
DOI: 
10.18500/0869-6632-2010-18-4-17-32
Литература

1. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003. 494 с.

2. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. 360 с.

3. Ланда П.С. Нелинейные колебания и волны. М.: Наука, 1997. 495 с.

4. Анищенко В.С., Астахов В.В., Вадивасова Т.Е, Стрелкова Г.И. Синхронизация регулярных, хаотических и стохастических колебаний. Москва–Ижевск: Институт компьютерных исследований, 2008. 144 с.

5. Ландау Л.Д. К проблеме турбулентности // ДАН СССР. 1944. Т. 44, No 8. C. 339.

6. Hopf E. A mathematical example displaying the features of turbulence // Communications on Pure and Applied Mathematics. 1948. Vol. 1. P. 303.

7. Anishchenko V., Nikolaev S., Kurths J. Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus // Chaos. 2008. Vol. 18. 037123.

8. Анищенко В.С., Николаев С.М. Механизмы синхронизации резонансного предельного цикла на двумерном торе//Нелинейная динамика. 2008. Т.4, No1. C.39.

9. Анищенко В.С., Николаев С.М. Синхронизация квазипериодических колебаний с двумя частотами // Известия вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 2. C. 69.

10. Anishchenko V., Astakhov S., Vadivasova T. Phase dynamics of two coupled oscillators under external periodic force // Europhysics Letters. 2009. Vol. 86. P. 30003.

11. Анищенко В.С., Астахов В.В., Вадивасова Т.Е, Феоктистов А.В. Численное и экспериментальное исследование внешней синхронизации двухчастотных колебаний // Нелинейная динамика. 2009. Т. 5, No 2. С. 237.

12. Scholarpedia. Phase model. http://www.scholarpedia.org/article/Phase_model/

13. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.

14. Van der Pol B. A theory of the amplitude of free and forced triode vibration // Radio Review. 1920. Vol. 1. P. 701.

15. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. Гостехиздат, 1958. 406 с.

16. Андронов А.А., Витт А.А, Хайкин С.Ю. Теория колебаний. 2-е изд. М.: Физ-матгиз, 1959. 916 с.

17. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. 2-е изд. М.: Физматлит, 2005. 292 с.

18. Арнольд В.И., Ильяшенко Ю.С. Обыкновенные дифференциальные уравнения. В кн.: Итоги науки и техники. Современные проблемы математики. Т. 5. 2000. 149 с.

19. Keith W.L., Rand R.H. 1/1 and 2/1 phase entrainment in a system of two coupled limit cycle oscillators // Journal of Mathematical Biology. 1984. Vol. 20. P. 133.

20. Baesens C., Guckenheimer J., Kim S. and MacKay R.S. Three coupled oscillators: mode locking, global bifurcations and toroidal chaos // Physica. 1991. Vol. D49, No 3. P. 87.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: 

BibTeX

@article{Kuznetsov-IzvVUZ_AND-18-4-17,
author = {Александр Петрович Кузнецов and Игорь Рустамович Сатаев and Людмила Владимировна Тюрюкина},
title = {ФАЗОВАЯ ДИНАМИКА ВОЗБУЖДАЕМЫХ КВАЗИПЕРИОДИЧЕСКИХ АВТОКОЛЕБАТЕЛЬНЫХ ОСЦИЛЛЯТОРОВ},
year = {2010},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {18},number = {4},
url = {http://andjournal.sgu.ru/ru/articles/fazovaya-dinamika-vozbuzhdaemyh-kvaziperiodicheskih-avtokolebatelnyh-oscillyatorov},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-4-17-32},pages = {17--32},issn = {0869-6632},
keywords = {синхронизация,фазовые осцилляторы,квазипериодическая динамика.},
abstract = {В фазовом приближении исследуется синхронизация внешней силой двух связанных фазовых осцилляторов. Рассмотрены и сравниваются режимы, когда автономные осцилляторы демонстрируют захват частот и биений с несоизмеримыми частотами. Представлены карты Ляпунова, обсуждаются возможные типы режимов возбуждаемой системы. Выявлены и классифицированы различные типы двухчастотных торов. Предложена модификация метода карт динамических режимов для определения областей существования различных резонансных двухчастотных торов.   }}