КОНКУРЕНЦИЯ ПЕРЕМЕЖАЕМОСТЕЙ

В работе изучены перемежаемые режимы в двупараметрическом семействе одномерных отображений при наличии нейтрально неустойчивой неподвижной точки на границе фазового пространства. Построена фазовая диаграмма в пространстве параметров, определяющая возможные сценарии перехода к хаосу с изменением параметров. Обнаружен необычный режим конкуренции перемежаемостей, изучены функции распределения длительности ламинарных фаз, показатель Ляпунова и топологическая энтропия этого семейства отображений.

Ключевые слова: 
-
Литература

1. Manneville P., Pomeau Y. Intermittency and Lorentz model // Phys. Lett. 1979. Vol. 75A. P. 1.

2. Шустер Г. Детерминированный хаос: Введение. М.: Мир, 1988.

3. Арнольд В.И. Геометрические методы обыкновенных дифференциальных уравнений. Ижевск: Ижевская республиканская типография, 2000, 400 с.

4. Naydenov S.V., Tur A.V., Yanovsky A.V., Yanovsky V.V. New scenario to chaos transition in the mappings with discontinuities // Phys. Letters A. 2003. Vol. 320. P. 160

5. Bauer M., Habip S., He D.R., and Martienssen W. New type of intermittency in discontinuous maps // Phys. Rev. Lett. 1992. Vol. 68. P. 1625.

6. Hugo L.D., de Cavalcante S. and Rios Leite J.R. Logarithmic periodicities in the bifurcations of type-I intermittent chaos // Phys. Rev. Lett. 2004. Vol. 92. P. 254102.

7. May R.M. Simple mathematical models with very complicated dynamics // Nature. 1976. Vol. 261. P. 459.

8. Наймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987.

9. Ben-Mizrache A., Procaccia I., Rosenberg N., Schmidt A., Schuster H.G. Real and apparent divergencies in low-frequency spectra of nonlinear dynamical systems // Physical Review A. 1985. Vol. 31. P. 1830.

10. Берже П., Помо И., Видаль К. Порядок в хаосе. О детерминированном подходе к турбулентности. М.: Мир, 1991.

11. Zolotarev V.M. One-dimensional stable distributions. Mathematical Monograph. American Mathematical Society, Providence, RI. 1986. Vol. 65.

12. Кузнецов С.П. Детерминированный хаос. М.: Физматлит, 2001.

13. Синай Я.Г. Стохастичность гладких динамических систем. Элементы теории КАМ, Современные проблемы математики. Фундаментальные направления. Т. 2. Динамические системы – 2. М.: ВИНИТИ, 1985. C. 115.

14. Zaslavsky G.M., Edelman M. Weak mixing and anomalous kinetics along filamented surfaces // Chaos. 2001. Vol. 11, No 2. P. 295.

15. Casati G., Prosen T. Mixing property of triangular billiards // Phys. Rev. Lett. 1999. Vol. 83. P. 4729.

16. Collet P., Crutchfield J.P., Eckmann J.P. Computing the Topological Entropy of Maps // Math. Phys. 1983 Commun. Vol. 88. P. 257.

17. Болотин Ю.Л., Тур А.В., Яновский В.В. Конструктивный хаос. Харьков: Институт монокристаллов, 2005.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: