Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Образец для цитирования:

Передерий Ю. А. Метод оценки спектра ляпуновских показателей по временной реализации //Известия вузов. ПНД. 2012. Т. 20, вып. 1. С. 99-104. DOI: https://doi.org/10.18500/0869-6632-2012-20-1-99-104

Язык публикации: 
русский

Метод оценки спектра ляпуновских показателей по временной реализации

Авторы: 
Передерий Юрий Андреевич, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Аннотация: 

В статье предложен новый метод оценки спектра ляпуновсих показателей по временной реализации. Рассматриваются и сравниваются уже известные группы методов по данной тематике. Описание метода дается на примере системы Ресслера. Также приводятся результаты численного моделирования.

DOI: 
10.18500/0869-6632-2012-20-1-99-104
Библиографический список: 

1. Кузнецов С.П. Динамический хаос. Москва: Физматлит, 2001. 2. Кузнецов С.П., Трубецков Д.И. Хаос и гиперхаос в лампе обратной волны // Известия вузов. Радиофизика. 2004. Т. XLVII. No 5. C. 1. 3. Hramov A.E., Koronovskii A.A. Generalized synchronization: A modified system approach // Phys. Rev. E. 2005. Vol. 71, No 6. 067201. 4. Pecora L.M., Carroll T.L., Heagy J.F. Statistics for mathematical properties of maps between time series embeddings // Phys. Rev. E. 1995. Vol. 52, No 4. P. 3420. 5. Hramov A. E., Koronovskii A. A., Moskalenko O. I. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? // Phys. Lett. A. 2006. Vol. 354, No 5–6. P. 423. 6. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time series // Physica D. 1985. Vol. 16. P. 285. 7. Eckmann J.-P., Kamphorst S.O., Ruelle D., Ciliberto S. Liapunov exponents from time series // Phys. Rev. A. 1986. Vol. 34, No 6. P. 4971. 8. Abarbanel H.D.I. Computing the Lyapunov spectrum of a dynamical system from an observed time series // Phys. Rev. A. 1991. Vol. 43, No 6. P. 2787. 9. Dieci L., van Vleck E.S. Computation of a few Lyapunov exponents for continuous and discrete dynamical systems // Applied Numerical Mathematics. 1995. Vol. 17. P. 275. 10. Lai D., Chen G. Statistical analysis of Lyapunov exponents from time series: A Jaco-bian approach // Mathl. Comput. Modelling 1998. Vol. 27, No 7. P. 1. 11. Rosenstein M.T., Collins J.J. De Luca C.J. A practical method for calculating largest Lyapunov exponents from small data sets // Physica D. 1993. Vol. 65, No 1–2. P. 117.  

Краткое содержание: