Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Образец для цитирования:

Дмитричев А. С., Касаткин Д. В., Клиньшов В. В., Кириллов С. Ю., Масленников О. В., Щапин Д. С., Некоркин В. И. Нелинейные динамические модели нейронов: обзор //Изв. вузов. ПНД. 2018. Т. 26, вып. 4. С. 5-58. DOI: https://doi.org/10.18500/0869-6632-2018-26-4-5-58

Опубликована онлайн: 
31.08.2018
Язык публикации: 
русский
УДК: 
621.373.1

Нелинейные динамические модели нейронов: обзор

Авторы: 
Дмитричев Алексей Сергеевич, Институт прикладной физики РАН (ИПФ РАН)
Касаткин Дмитрий Владимирович, Институт прикладной физики РАН (ИПФ РАН)
Клиньшов Владимир Викторович, Нижегородский государственный университет имени Н.И.Лобачевского (ННГУ)
Кириллов Сергей Юрьевич, Институт прикладной физики РАН (ИПФ РАН)
Масленников Олег Владимирович, Институт прикладной физики РАН (ИПФ РАН)
Щапин Дмитрий Сергеевич, Институт прикладной физики РАН (ИПФ РАН)
Некоркин Владимир Исаакович, Нижегородский государственный университет имени Н.И.Лобачевского (ННГУ)
Аннотация: 

Тема исследования. Представлен обзор основных динамических моделей нейронной активности и обсуждаются индивидуальные особенности их поведения, которые могут быть в последующем использованы как основа при разработке и построении различных конфигураций нейронных сетей. Работа содержит как новые оригинальные результаты, так и обобщение уже известных, опубликованных ранее в разных журналах. Цель – познакомить читателя с базовыми динамическими свойствами нейронов, такими как наличие состояния покоя и генерация потенциала действия; сформировать у него общее представление о динамических механизмах, лежащих в основе отмеченных свойств и используемых при построении моделей нейронной активности различного уровня детализации. Исследуемые модели. С математической точки зрения модели нейронов делятся на два класса. Первый класс представлен моделями с непрерывным временем в форме систем обыкновенных дифференциальных уравнений. Моделям этого класса посвящена вторая часть данного обзора. Открывает эту часть наиболее детализированная модель Ходжкина–Хаксли, являющаяся канонической моделью нейронной активности в нелинейной динамике. Затем приводятся упрощенные модели – двумерная модель Моррис–Лекара для спайкинга и трехмерная модель Хиндмарша–Роуза для бёрстинга. Наиболее подробно описана модель ФитцХью–Нагумо, для которой проведен детальный бифуркационный анализ. Также приведены модели, описывающие нейроны со специфическими свойствами – модель нейрона с постдеполяризацией и модель нейрона нижних олив. Завершает эту часть наиболее простая модель типа «накопление–сброс». Второй класс образуют модели с дискретным временем, представляющие собой точечные отображения. Такие модели в последнее время приобретают все большую популярность в виду богатства демонстрируемых динамических режимов и простоты численного моделирования. Моделям этого класса посвящена третья часть данного обзора. В частности, приведены такие модели как модель Киалво, модель Ижикевича, модель Рулькова и модель Курбажа–Некоркина. Результаты. Изложены базовые физические принципы построения математических моделей нейронной активности, основанные на ионном транспорте. На примере модели ФитцХью–Нагумо изучены основные свойства и механизмы возникновения режимов мультипорогового возбуждения в нейронах. Раскрыт механизм формирования бёрстовых колебаний в модели Хиндмарша–Роуза. Описан динамический механизм временного понижения порога возбуждения и возникновения периодических колебаний в модели нейрона с постдеполяризацией. Описано формирование в нейронах нижних олив (Ca2+)- и (Na2+)-зависимых спайков. Описаны динамические механизмы формирования основных регулярных и хаотических режимов нейронной активности в дискретных моделях Киалво, Ижикевича, Рулькова и Курбажа–Некоркина. Обсуждение. В Заключении кратко резюмируется содержание обзора.  

DOI: 
10.18500/0869-6632-2018-26-4-5-58
Краткое содержание: 
Полный текст в формате PDF: