СИНХРОНИЗАЦИЯ СВЯЗАННЫХ АВТОКОЛЕБАТЕЛЬНЫХ ОСЦИЛЛЯТОРОВ С НЕИДЕНТИЧНЫМИ ПАРАМЕТРАМИ

Рассматривается синхронизация автоколебательных осцилляторов ван дер Поля в случае неидентичности по управляющим параметрам и уровню нелинейной диссипации. Показано, что в такой системе возможен эффект смены доминирующего осциллятора. Этот эффект приводит к характерной форме основного языка синхронизации. Представлены результаты экспериментов со связанными радиофизическими автогенераторами, которые подтверждают результаты, полученные численным моделированием и аналитическим исследованием в рамках фазового приближения.

 
Литература

1. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация, фундаментальное нелинейное явление. М.: Техносфера, 2003. 508 с.

2. Aronson D.G., Ermentrout G.B., Kopell N. Amplitude response of coupled oscillators // Physica D. 1990. Vol. 41. P. 403.

3. Cohen D.S., Neu J.C. Interacting oscillatory chemical reactors // Bifurcation theory and applications in the scientific disciplines / Ed. O. Gurel and O.E. Rossler. Ann.  ̈N.Y. Acad. Sci. 316. 1979. P. 332.

4. Neu J.C. Coupled chemical oscillators // SIAM J. appl. Math. 1979. Vol. 37, No 2. P. 307.

5. Minorsky N. Nonlinear oscillators. Van Nostrand, 1962.

6. Rand R.H., Holmes P.J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1980. Vol. 15. P. 387.

7. Chakraborty T., Rand R.H. The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1988. Vol. 23, No 5/6. P. 369.

8. Chakraborty T. Bifurcation analysis of two weakly coupled van der Pol oscillators. Doctoral thesis. Cornell University, 1986.

9. Storti D.W., Rand R.H. Dynamics of two strongly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1982. Vol. 17, No 3. P. 143.

10. Pastor-Diaz I., Lopez-Fraguas A. Dynamics of two coupled van der Pol oscillators // Phys. Rev. E. 1995. Vol. 52. P. 1480.

11. Pavlidis T. Biological oscillators: The Mathematical Analysis. Academic press, 1973.

12. Poliashenko M., McKay S.R., Smith C.W. Chaos and nonisochronism in weakly coupled nonlinear oscillators // Phys. Rev. A. 1991. Vol. 44. P. 3452.

13. Poliashenko M., McKay S.R., Smith C.W. Hysteresis of synchronous – asynchronous regimes in a system of two coupled oscillators // Phys. Rev. A. 1991. Vol. 43. P. 5638.

14. Ivanchenko M.V., Osipov G.V., Shalfeev V.D., Kurths J. Synchronization of two non-scalar-coupled limit-cycle oscillators // Physica D. 2004. Vol. 189, No 1–2 . P. 8.

15. Кузнецов А.П., Паксютов В.И. Особенности устройства пространства параметров двух связанных осцилляторов ван дер Поля–Дуффинга // Изв. Вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 4. С. 3.

16. Кузнецов А.П., Станкевич Н.В., Тюрюкина Л.В. Связанные осцилляторы ван дер Поля и ван дер Поля–Дуффинга: фазовая динамика и компьютерное моделирование // Изв. Вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 4. C. 101.

17. Кузнецов А.П., Паксютов В.И., Роман Ю.П. Особенности синхронизации в системе связанных осцилляторов ван дер Поля, неидентичных по управляющему параметру // Письма в ЖТФ. 2007. Т. 33, вып. 15. С. 15.

18. Кузнецов А.П., Паксютов В.И., Роман Ю.П. Особенности синхронизации в системе неидентичных связанных осцилляторов ван дер Поля и ван дер Поля – Дуффинга. Широкополосная синхронизация // Изв. Вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 4. С. 3.

19. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физ-матлит, 2002. 292 с.

20. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.

21. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990. 312 с.

22. Kuznetsov Yuri A. Elements of applied bifurcation theory. New York: Springer, 1998. 593 p.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: