НЕЛИНЕЙНОЕ МНОГОМЕРНОЕ УРАВНЕНИЕ ФОККЕРА–ПЛАНКА В ПРИБЛИЖЕНИИ СРЕДНЕГО ПОЛЯ ДЛЯ МНОГОКОМПОНЕНТНЫХ СИСТЕМ РЕАКЦИОННО-ДИФФУЗИОННОГО ТИПА

Приближение среднего поля развито для многокомпонентных стохастических систем реакционно-диффузионного типа. Получено многомерное нелинейное самосогласованное уравнение Фоккера–Планка, определяющее плотность вероятности состояния системы, которая описывает широко известную модель автокаталитической химической реакции (брюсселятор) с пространственно коррелированным мультипликативным шумом. Изучена эволюция плотности вероятности и статистические характеристики этой системы в области бифуркации Тьюринга. Численное исследование решений полученного уравнения для стохастического брюсселятора показывает, что при увеличении интенсивности шума в области бифуркации Тьюринга существуют различные типы решений: одномодальное решение, временная бимодальность и решение, при котором происходит многократная «перекачка» плотности вероятности через бимодальность.

Литература

1. Lindnera B., Garc ́ia-Ojalvo J., Neimand A., Schimansky-Geier L. Effects of noise in excitable systems // Physics Reports. 2004. Vol. 392. 321.

2. Ibanes M., Garc  ̃ Mean-field results // Phys. Rev. E. 1999. Vol. 60. 3597.

3. Buceta J., Ibanes M., Sancho J.M., Lindenberg K.  ̃ Noise-driven mechanism for pattern formation // Phys. Rev. E. 2003. Vol. 67. 021113.

4. Carrillo O., Ibanes M., Garc  ̃noise-induced phase transitions: Beyond the noise interpretation // Phys. Rev. E. 2003. Vol. 67. 046110.

5. Zaikin A.A., Garc ́ia-Ojalvo J., Schimansky-Geier L. Nonequilibrium first-order phase transition induced by additive noise // Phys. Rev. E. 1999. Vol. 60. R6275.

6. Muller R., Lippert K., Kuhnel A., Behn U.  ̈ First-order nonequilibrium phase transition in a spatially extended system // Phys. Rev. E. 1997. Vol. 56. 2658.

7. Carrillo O., Ibanes M., Sancho J.M.  ̃ Noise induced phase transitions by nonlinear instability mechanism // Fluct. Noise Lett. 2002. Vol. 2. L1.

8. Landa P.S., Zaikin A.A., Schimansky-Geier L. Influence of additive noise on noise-induced phase transitions in nonlinear chains // Chaos, Solitons and Fractals. 1998. Vol. 9. 1367.

9. Van den Broeck C., Parrondo J.M.R., Toral R., Kawai R. Nonequilibrium phase transitions induced by multiplicative noise // Phys. Rev. E. 1997. Vol. 55. 4084.

10. Buceta J., Parrondo J.M.R., and de la Rubia F.J. Random Ginzburg–Landau model revisited: Reentrant phase transitions // Phys. Rev. E. 2001. Vol. 63. 031103.

11. Prigogine I., Lefever R. Symmetry breaking instabilities in dissipative systems. II. // J. Chem. Phys. 1968. Vol. 48. 1695.

12. Kurushinа S.E., Maximov V.V., Romanovskii Yu.M. Spatial pattern formation in external noise: Theory and simulation // Phys. Rev. E. 2012. Vol. 86. 011124.

13. Horsthemke W., Lefever M. Noise-Induced Transition. Berlin, Springer, 1984.

14. Garc ́ia-Ojalvo J., Lacasta A.M., Sancho J.M., Toral R. Phase separation driven by external fluctuations // Europhys. Lett. 1998. Vol. 42. 125.

15. Stratonovich R.L. Topics in the Theory of Random Noise. New York, Gordon and Breach, 1963, Vol. 1; 1967, Vol. 2.

16. Karetkina N.V. An unconditionally stable difference scheme for parabolic equations containing first derivatives // USSR Computational Mathematics and Mathematical Physics. 1980. Vol. 20. 257.

17. Samarskii A.A. On an economical difference method for the solution of a multi-dimensional parabolic equation in an arbitrary region // USSR Computational Mathematics and Mathematical Physics. 1963. Vol. 2. 894.

18. Samarskii A.A. Local one dimensional difference schemes on non-uniform nets // USSR Computational Mathematics and Mathematical Physics. 1963. Vol. 3. 572.

19. Samarskii A.A. Homogeneous difference schemes on non-uniform nets for equations of parabolic type // USSR Computational Mathematics and Mathematical Physics. 1963. Vol. 3. 351.

20. Van den Broeck C., Parrondo J.M.R., Toral R. Noise-induced nonequilibrium phase transition // Phys. Rev. Lett. 1994. 73. 3395.  ́ia-Ojalvo J., Toral R., Sancho J.M. Noise-induced phase separation:  ́ia-Ojalvo J., Casademunt J., Sancho J.M. Intrinsic

Статус: 
одобрено к публикации
Краткое содержание (PDF):