УДВОЕНИЯ И РАЗРУШЕНИЕ ТРЕХЧАСТОТНЫХ ТОРОВ В НЕЛИНЕЙНОМ ОСЦИЛЛЯТОРЕ С КВАЗИПЕРИОДИЧЕСКИМ ВОЗДЕЙСТВИЕМ: ЭКСПЕРИМЕНТ

В работе с помощью методики «кратного» сечения Пуанкаре экспериментально исследован нелинейный контур с внешним воздействием в виде суммы трех гармонических составляющих с иррациональными значениями частот. Построены экспериментальные карты динамических режимов на плоскостях параметров амплитуд внешнего воздействия. Изучены особенности разрушения трехчастотного тора, его удвоения.

Литература

1. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003. 508 с.

2. Лоскутов А.Ю., Михайлов А.С. Основы теории сложных систем. М.; Ижевск: Институт компьютерных исследований, 2007. 620 с.

3. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. 360 с.

4. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Стрелкова Г.И. Синхронизация регулярных, хаотических и стохастических колебаний. М.; Ижевск: Институт компьютерных исследований, 2008. 144 с.

5. Ландау Л.Д. К проблеме турбулентности // ДАН СССР. 1944. Т. 44. С. 339.

6. Ruelle D., Takens F. On the nature of turbulence // Comm. Math. Phys. 1971. Vol. 20. P. 167.

7. Vitolo R., Broer H., Simo C. Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms // Nonlinearity. 2010. Vol. 23. P. 1919.

8. Vitolo R. Bifurcations of attractors in 3D diffeomorphisms: A study in experimental mathematics. PhD thesis, 2003. http://dissertations.ub.rug.nl/faculties/science/2003/r.vitolo/?pLanguage=en&pFullItemRecord=ON

9. Grebogi C., Ott E., Pelikan S., Yorke J.A. Strange attractors that are not chaotic // Physica D. 1984. Vol. 13, № 1, 2. P. 261.

10. Kuznetsov A.P., Stankevich N.V. A simple autonomous quasiperiodic self-oscillator // Communications in Nonlinear Science and Numerical Simulation. 2010. Vol. 15. P. 1676.

11. Кузнецов С.П., Пиковский А.С., Фойдель У. Странный нехаотический аттрактор // В кн.: Нелинейные волны’2004/ Под ред. А.В. Гапонова-Грехова и В.И. Некоркина. Нижний Новгород: ИПФ РАН, 2005. С. 484.

12. Безручко Б.П., Кузнецов С.П., Пиковский А.С., Фойдель У., Селезнев Е.П. О динамике нелинейных систем под внешним квазипериодическим воздействием вблизи точки окончания линии бифуркации удвоения тора // Изв. вузов. Прикладная нелинейная динамика. 1997. Т. 5, № 6. С. 3.

13. Bezruchko B.P., Kuznetsov S.P., Seleznev E.P. Experimental observation of dynamics near the torus-doubling terminal critical point // Phys. Rev. E. 2000. Vol. 62, № 6. P. 7828.

14. Селезнев Е.П., Захаревич А.М. Структура пространства управляющих параметров нелинейного осциллятора при квазипериодическом воздействии // Изв. вузов. Прикладная нелинейная динамика. 2009. Т. 17, № 6. С. 17.

15. Anishchenko V.S., Safonova M.A., Feudel U., Kurths J. Bifurcation and transition to chaos through three-dimensional tori // Int. J. of Bifurcation and Chaos. 1994 Vol. 4, № 3. P. 595.

16. Попова Е.С. Влияние флуктуаций на эволюцию трехмерного тора в неавтономной системе // Изв. вузов. Прикладная нелинейная динамика. 2012. Т. 20, № 2. С. 98.

17. Kim S. Simultaneous rational approximations in the study of dynamical systems / S. Kim, S. Ostlund // Phys. Rev. A. 1986. Vol. 34, № 4. P. 3426.

18. Linsay P.S., Cumming A.W. Three-frequency quasiperiodisity, phase locking and the onset of chaos // Physica D. 1989. Vol. 40. P. 196.

19. Moon F.C., Holmes W.T. Double Poincare sections of a quasi-periodically forced, ´chaotic attractor // Physics Letters A. 1985. Vol. 111. Issue 4. P. 157.

20. Кузнецов А.П., Попова Е.С., Селезнев Е.П., Станкевич Н.В. Методика диагностики многочастотных торов в эксперименте // Вестник СГТУ. 2013. № 1.

21. Анищенко В.С., Николаев С.М. Генератор квазипериодических колебаний. Бифуркация удвоения двумерного тора // Письма в ЖТФ. 2005. Том 31. С. 884.

 

Статус: 
одобрено к публикации
Краткое содержание (PDF):