О СЦЕНАРИЯХ РАЗРУШЕНИЯ ГИПЕРБОЛИЧЕСКОГО ХАОСА В МОДЕЛЬНЫХ ОТОБРАЖЕНИЯХ НА ТОРЕ С ДИССИПАТИВНЫМ ВОЗМУЩЕНИЕМ

В работе исследуется диссипативная модификация отображения «кот Арнольда», в которой при малых значениях амплитуды введенного возмущения реализуется гиперболический хаос, и в определенном диапазоне имеет место гиперболический хаотический аттрактор с поперечной канторовой структурой, разрушающийся при дальнейшем увеличении амплитуды возмущения.

Литература

1. Кузнецов С.П. Динамический хаос (курс лекций). М.: Изд-во Физ.-мат. лит., 2001. 296 с.

2. Берже П., Помо И., Видаль К. Порядок в хаосе. О детерминистском подходе к турбулентности. М.: Мир, 1991. 368 с.

3. Шустер Г. Детерминированный хаос. М.: Мир, 1988. 240 с.

4. Лихтенберг А., Либерман М. Регулярная и стохастическая динамика. М.: Мир, 1984. 528 c.

5. Анищенко В.С., Вадивасова Т.Е., Астахов В.В. Нелинейная динамика хаотических и стохастических систем. Фундаментальные основы и избранные проблемы / Под ред. В.С. Анищенко. Саратов: Изд-во Сарат. ун-та, 1999. 368 с.

6. Кузнецов С.П. Гиперболические странные аттракторы систем, допускающих физическую реализацию // Изв. вузов. ПНД. 2009. T. 17, No 4. С. 5.

7. Кузнецов С.П. Пример неавтономной системы с непрерывным временем, имеющей аттрактор типа Плыкина в отображении Пуанкаре // Нелинейная динамика. 2009. Т. 5, No 3. C. 403.

8. Кузнецов С.П. Динамический хаос и однородно гиперболические аттракторы: от математики к физике // Успехи физических наук. 2011. T. 181, No 2. C. 121.

9. Кузнецов С.П., Селезнев Е.П. Хаотическая динамика в физической системе со странным аттрактором типа Смейла – Вильямса // ЖЭТФ. 2006. T. 129. Вып. 2. C. 400.

10. Belykh V., Belykh I., Mosekilde E. Hyperbolic Plykin attractor can exist in neuron models // International Journal of Bifurcation and Chaos. 2005. Vol. 15, No 11.

11. Каток А.Б., Хасселблат Б. Введение в современную теорию динамических систем / Пер. с англ. М.: Изд-во Факториал, 1999. 768 c.

Статус: 
одобрено к публикации
Краткое содержание (PDF):