МЕТОД ЭМПИРИЧЕСКИХ МОД И ВЕЙВЛЕТ­ФИЛЬТРАЦИЯ: ПРИМЕНЕНИЕ В ЗАДАЧАХ ГЕОФИЗИКИ

Представлены теоретические основы метода эмпирических мод, являющегося одним из новых способов частотно­временного анализа процессов с меняющимися во времени характеристиками. Показано, что применение этого подхода совместно с вейвлетной фильтрацией позволяет детально изучить структуру многочастотных регистрируемых сигналов, наблюдаемых при выполнении сейсморазведки.

Литература

1. Peng C.-K., Havlin S., Stanley H., Goldberger A. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series // Chaos. 1995. Vol. 5. P. 82.

2. Muzy J.F., Bacry E., Arneodo A. The multifractal formalism revisited with wavelets // Int. J. Bifurcation and Chaos. 1994. Vol. 4, No 2. P. 245.

3. Daubechies I. Ten lectures on wavelets. Philadelphia: S.I.A.M., 1992.

4. Meyer Y. Wavelets: Algorithms and applications. Philadelphia: S.I.A.M., 1993.

5. Mallat S.G. A wavelet tour of signal processing. New York: Academic Press, 1998.

6. Addison P.S. The illustrated wavelet transform handbook: applications in science, engineering, medicine and finance. Bristol; Philadelphia: IOP Publishing, 2002.

7. Flandrin P. Some aspects of non-stationary signal processing with emphasis on time-frequency and time-scale methods // Wavelets / Eds J.M. Combes, A. Grossmann, Ph. Tchamitchian. Springer, Berlin. 1989. P. 68.

8. Flandrin P. Time-frequency and time-scale analysis. San Diego: Academic Press, 1999.

9. Анисимов А.А., Павлова О.Н., Тупицын А.Н., Павлов А.Н. Вейвлет-анализ чирпов // Изв. вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 5. С. 3.

10. Kaiser G. A friendly guide to wavelets. Boston: Birkhauser, 1994.  ̈

11. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М.: Физматлит, 2003.

12. Zhang Q., Benveniste A. Wavelet networks // IEEE Trans. Neural Networks. 1992. Vol. 3. P. 889.

13. Zhang J., Walter G.G., Miao Y., Lee W.N. Wavelet neural networks for function learning // IEEE Trans. Signal Proc. 1995. Vo1. 43. P. 1485.

14. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-C., Tung C.C. and Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. London Ser. A. 1998. Vol. 454. C. 903.

15. Coughlin K.T., Tung K.K. 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method // Adv. Space Res. 2004. Vol. 34. P. 39.

16. Neto E.P.S., Custaud M.A., Cejka C.J., Abry P., Frutoso J., Gharib C., Flandrin P. Assessment of cardiovascular autonomic control by the empirical mode decomposition // Method. Inform. Med. 2004. Vol. 43. P. 60.

17. Wu Z., Huang N.E. A study of the characteristics of white noise using the empirical mode decomposition method // Proc. R. Soc. London, Ser. A. 2004. Vol. 460. P. 1597.

18. Huang N.E., Shen Z., Long S.R. A new view of nonlinear water waves: the Hilbert spectrum // Annu. Rev. Fluid Mech. 1999. Vol. 31. C. 417.

19. Hilbert–Huang transform and its applications / Eds N.E. Huang, S.S.P. Shen. Singapore: World Scientific, 2005.

20. Flandrin P., Goncalves P.  ́ Empirical mode decompositions as data-driven wavelet-like expansion // Int. J. Wavelets Multiresolut. Inform. Process. 2004. Vol. 2. P. 477.

21. Flandrin P., Rilling G., Goncalves P.  ́ Empirical mode decompositions as a filter bank // IEEE Signal Process. Lett. 2004. Vol. 11. P. 112.

22. Филатова А.Е., Артемьев А.Е., Короновский А.А., Павлов А.Н., Храмов А.Е. Успехи и перспективы применения вейвлетных преобразований для анализа нестационарных нелинейных данных в современной геофизике // Известия вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 3. С. 3.

 

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: