ВОССТАНОВЛЕНИЕ СИСТЕМ НЕЙТРАЛЬНОГО ТИПА С ЗАПАЗДЫВАНИЕМ

Предложены методы реконструкции систем с задержкой, моделируемых дифференциальными уравнениями нейтрального типа с запаздыванием, по временным рядам. Эффективность методов продемонстрирована на численных примерах при восстановлении обобщенного уравнения Маккея–Гласса и модельных уравнений, описывающих качку корабля и колебания тела вертикально стоящего человека.

Литература

1. Mackey M.C., Glass L. Oscillations and chaos in physiological control systems // Science. 1977. Vol. 197. P. 287.

2. Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system // Opt. Commun. 1979. Vol. 30. P. 257.

3. Epstein I.R. Delay effects and differential delay equations in chemical-kinetics // Int. Rev. in Phys. Chem. 1992. Vol. 11. P. 135.

4. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.

5. Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Phys. Lett. A. 1997. Vol. 234. P. 336.

6. Tian Y.-C., Gao F. Extraction of delay information from chaotic time series based on information entropy // Physica D. 1997. Vol. 108. P. 113.

7. Hegger R., B  ̈unner M.J., Kantz H., Giaquinta A. Identifying and modeling delay feedback systems // Phys. Rev. Lett. 1998. Vol. 81. P. 558.

8. B  ̈unner M.J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A. Reconstruction of systems with delayed feedback: (I) Theory // Eur. Phys. J. D. 2000. Vol. 10. P. 165.

9. Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ. 2005. Т. 127. Вып. 3. С. 515.

10. Ort ́in S., Guti ́errez J.M., Pesquera L., Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction // Physica A. 2005. Vol. 351. P. 133.

11. Siefert M. Practical criterion for delay estimation using random perturbations // Phys. Rev. E. 2007. Vol. 76. 026215.

12. Yu D., Frasca M., Liu F. Control-based method to identify underlying delays of a nonlinear dynamical system // Phys. Rev. E. 2008. Vol. 78. 046209.

13. Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206.

14. Zunino L., Soriano M.C., Fischer I., Rosso O.A., Mirasso C.R. Permutation-infor-mation-theory approach to unveil delay dynamics from time-series analysis // Phys. Rev. E. 2010. Vol. 82. 046212.

15. Ma H., Xu B., Lin W., Feng J. Adaptive identification of time delays in nonlinear dynamical models // Phys. Rev. E. 2010. Vol. 82. 066210.

16. Gopalsamy K. Oscillations in neutral delay-differential equations // J. Math. Phys. Sci. 1987. Vol. 21. P. 23.

17. Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Dordrecht: Kluwer, 1992.

18. Hale J.K., Lunel S.M.V. Introduction to Functional Differential Equations. New York: Springer, 1993.

19. Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183.

20. Patanarapeelert K., Frank T.D., Friedrich R., Beek P.J., Tang I.M. A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise // Phys. Lett. A. 2006. Vol. 360. P. 190.

21. Peterka R.J. Sensorimotor integration in human postural control // J. Neurophysiol. 2002. Vol. 88. P. 1097.

 

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: