ГИПЕРМУЛЬТИСТАБИЛЬНОСТЬ В МОДЕЛЯХ ЛАЗЕРОВ С БОЛЬШИМ ЗАПАЗДЫВАНИЕМ

В работе исследуется модель одномодового полупроводникового лазера с оптоэлектронной обратной связью, основанная на балансных уравнениях с запаздывающим аргументом. Методами локального анализа построены континуальные наборы семейств квазинормальных форм в окрестности бифуркационых значений параметров. Показана возможность сосуществования большого числа установившихся осциллирующих режимов.

Литература

1. Yanchuk S., Perlikowski P. Delay and periodicity // Phys. Rev. E. 2009. Vol. 79. 046221.

2. Loose A., Goswami B.K., Wunsche H.-J., Henneberger F. Tristability of a semiconductor laser due to time-delayed optical feedback // Phys. Rev. E. 2009. Vol. 79. 036211.

3. Erneux T., Grasman J. Limit-cycle oscillators subject to a delayed feedback // Phys. Rev. E. 2008. Vol. 78. 026209.

4. Grigorieva E.V., Kaschenko S.A., Loiko N.A., Samson A.M. Nonlinear dynamics in a laser with a negative delayed feedback // Physica D. 1992. Vol. 59. P. 297.

5. Grigorieva E.V., Kaschenko S.А. Regular and chaotic pulsations in lazer diode with delayed feedback // Bifurcations and chaos. 1993. Vol. 6. P. 1515.

6. Wolfrum M., Yanchuk S. Eckhaus instability in systems with large delay // Phys. Rev. Letters. 2006. Vol. 96. 220201.

7. Paoli T.L., Ripper L.E. Frequency stabilization and narrowing of optical pulses from CW GaAs injection lasers // IEEE J. Quan. Electron. 1970. Vol. QE–6. P. 335.

8. Giacomelli G., Calzavara M., Arecchi F.T. Instabilities in a semiconductor laser with delayed optoelectronic feedback // Opt. Commun. 1989. Vol. 74. P. 97.

9. Arecchi F.T., Giacomelli G., Lapucci A., Meucci R. Dynamics of a CO2 laser with delayed feedback: The short-delayed regime // Phys. Rev. A. 1991. Vol. 43. P. 4997.

10. Кащенко С.А. Исследование методами большого параметра системы нелинейных дифференциально-разностных уравнений, моделирующих задачу хищник–жертва // Докл. АН СССР 1982. Т. 266, No 4. С. 792.

11. Кащенко С.А. Об установившихся режимах уравнения Хатчинсона с диффузией // ДАН СССР. 1987. Т. 292, No 2. С. 327.

12. Бутузов В.Ф., Васильева А.Б. Асимптотические разложения решений сингулярно возмущенных уравнений. М.: Наука, 1973.

13. Grigorieva E.V., Haken H., Kaschenko S.A. Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback // Optics Commun. 1999. Vol. 165. P. 279.

14. Bestehorn M., Grigorieva E.V., Haken H. and Kaschenko S.A. Order parameters for class-B lasers with a long time delayed feedback // Physica D. 2000. Vol. 145. P. 111.

15. Кащенко С.А. О квазинормальных формах для параболических уравнений с малой диффузией // ДАН СССР. 1988. Т. 299, No 5. С. 1049.

16. Кащенко С.А. О коротковолновых бифуркациях в системах с малой диффузией // Докл. АН СССР. 1989. Т. 307, No 2. С. 269.

17. Кащенко С.А. Применение метода нормализации к изучению динамики дифференциально-разностных уравнений с малым множителем при производной // Дифференциальные уравнения. 1989. Т. 25, No 8.

18. Kaschenko S.A. Normalization in the systems with small diffusion // International Journal of Bifurcations and chaos. 1996. Vol. 6, No 7. P. 1093.

19. Кащенко С.А. Уравнения Гинзбурга–Ландау – нормальная форма для дифференциально-разностного уравнения второго порядка с большим запаздыванием // Журнал вычисл.матем. и матем. физ. 1998. Т. 38, No 3. С. 457.

20. Новое в синергетике: взгляд в третье тысячелетие. М.: Российская академия наук и издательство «Наука», 2002. 478 с.

21. Кащенко И.С. Асимптотический анализ поведения решений уравнения с большим запаздыванием // Доклады Академии Наук. 2008. Т. 421, No 5. С. 586.

22. Кащенко И.С. Локальная динамика уравнений с большим запаздыванием // Журнал вычислительной математики и математической физики. 2008. Т. 48, No 12. С. 2141.

23. Кащенко И.С. Буферность в уравнениях второго порядка с большим запаздыванием // Моделирование и анализ информационных систем. Ярославль, 2008. Т. 15, No 2. С. 31.

 

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: