

Изв. вузов «ПНД», т. 16, № 6, 2008

УДК 532.5

УЕДИНЕННЫЕ ВОЛНЫ ДВУМЕРНОГО МОДИФИЦИРОВАННОГО УРАВНЕНИЯ КАВАХАРЫ

В.М. Катсон

Уравнениями такого типа описывается ряд реальных процессов, таких как движение волн под ледяным покровом или распространение волн продольной деформации в тонких цилиндрических оболочках. С помощью «метода простейших уравнений» получены точные уединенно-волновые решения двумерного модифицированного уравнения Кавахары. На основе неявного псевдоспектрального метода проводится численное моделирование. Выявлены режимы распространения двумерных волн деформации с классическим солитонным поведением.

Введение

Магнитоакустические волны в плазме [1], связанные состояние двух солитонов [2], длинные волны в жидкости под ледяным покровом [3], волны продольной деформации в тонких цилиндрических оболочках [4] и т. д. описываются нелинейным уравнением Кавахары

$$u_t + uu_x + u_{xxx} - u_{xxxxx} = 0. (1)$$

Известно [5, 6], что уравнения (1) имеет уединенно-волновое решение

$$u = \frac{105}{169} \operatorname{ch}^{-4} \left(\xi / \sqrt{52} \right), \quad \xi = x - c_0 t.$$
⁽²⁾

Однако уравнение (1) было выведено в предположении отсутствия зависимости u от поперечной координаты. Поэтому представляется интересным рассмотреть модификацию этого уравнения, учитывающую эту пространственную неоднородность.

В контексте исследования волн в цилиндрических оболочках (или в тонких пластинах) двумерное модифицированное уравнение Кавахары

$$u_t - u^2 u_x - \sigma u_{xxx} + u_{xxxxx} = \delta \int_0^x u_{yy} dx$$
(3)

обобщает уравнение (1) на случай зависимости продольной компоненты деформации от поперечной координаты (интегральный член в правой части) и учета физической нелинейности материала оболочки (3-й порядок нелинейности).

Несмотря на явную связь с уравнением КдВ, уравнение (3) не интегрируется методом обратной задачи рассеяния. Следовательно, для его полного изучения нельзя ограничиваться построением только точных аналитических решений, необходимо также провести ряд численных экспериментов и рассмотреть эволюцию нескольких типов начальных условий.

Для построения аналитического решения в работе использовался «метод простейших уравнений» [7]. Данный метод, в отличие от прямых методов построения солитонных решений, позволяет находить решения уравнений в частных производных более широкого класса. Для проверки найденного точного решения зададим его в качестве начального возмущения в численном эксперименте и пронаблюдаем его эволюцию. Если заданное таким образом начальное возмущение будет распространяться без изменения формы, можно с уверенностью говорить, что найденное точное решение уравнения (3) обладает классическими солитонными свойствами. Для подтверждения данного вывода будет рассмотрено взаимодействие двух уединенно волновых решений уравнения (3).

1. Метод простейших уравнений

Точные решения двумерного модифицированного уравнения Кавахары будем искать по «методу простейших уравнений», предложенному Н.А. Кудряшовым в [7] и состоящему в следующем.

Пусть задано обыкновенное нелинейное дифференциальное уравнение в полиномиальной форме

$$M\left[y\right] = 0. \tag{4}$$

Рассмотрим обыкновенное нелинейное дифференциальное уравнение меньшего порядка

$$E_n\left[Y\right] = 0. \tag{5}$$

Любое обыкновенное нелинейное дифференциальное уравнение (5), меньшего порядка, чем (4), с известным общим решением в дальнейшем называется простейшим уравнением. Примером простейшего уравнения служат уравнение Риккати

$$E_n[Y] = Y_z + Y^2 - aY - b = 0$$
(6)

или уравнение для эллиптических функций Вейштрасса

$$E_n[R] = R_z^2 - 4R^3 - aR^2 - bR - c = 0.$$
(7)

Предположим, что мы можем найти соотношение между уравнениями (4) и (5)

$$y = F(Y). \tag{8}$$

Подстановка (8) в (4) приводит к выражению

$$M[F(Y)] = AE_n[Y], \qquad (9)$$

где *А* искомый оператор. Из соотношения (9) видно, что для любого решения простейшего уравнения (5) существует частное решение уравнения (4) в виде (8). Алгоритм нахождения решений состоит из трех шагов.

Первый шаг. Определение доминантных членов и порядка сингулярности уравнения (4). Этот этап в точности соответствует первому шагу теста Пенлеве [5].

Второй шаг. Представление формулы (8) в виде полинома по степеням общего решения уравнения (5) с учетом порядка сингулярности уравнения (4).

Для уравнения (6) решение будет иметь вид

$$y(z) = A_0 + A_1 Y + \dots + A_n Y^n + B_1 \left(\frac{Y_z}{Y}\right) \dots + B_n \left(\frac{Y_z}{Y}\right)^n.$$
 (10)

Здесь Y(z) общее решение уравнения (6), A_k (k = 0, ..., n) и B_k (k = 1, ..., n) неизвестные коэффициенты.

Для уравнения (7) решение ищется в виде

$$y(z) = A_0 + A_1 R + \dots + A_n R^n + (B_1 + \dots + B_{n-1} R^{n-2}) R_z + D_1 \left(\frac{R_z}{R}\right) \dots + D_n \left(\frac{R_z}{R}\right)^n.$$
 (11)

Здесь R(z) общее решение уравнения (7), A_k (k = 0, ..., n), B_k (k = 1, ..., n - 1) и D_k (k = 1, ..., n) неизвестные коэффициенты.

Третий шаг. Определение коэффициентов A_k (k=0,..,n), B_k (k=1,..,n-1) и D_k (k=1,..,n) в формулах (10) и (11).

Коэффициенты определяются после подстановки выражений (10) и (11) в (4). В результате подстановки (10) получаем

$$M[y] = \sum_{k=0}^{2N} P_k(a, b, A_0, \dots A_n, B_1, \dots B_n) Y^{k-N}.$$
(12)

Коэффициенты $a,b,A_0,\ldots A_n,B_1,\ldots B_n$ находятся из системы алгебраических уравнений

$$P_k(a, b, A_0, \dots A_n, B_1, \dots B_n) = 0, \quad k = 0, \dots, 2N.$$
(13)

Выражение (10) с найденными решениями системы (13) будет решением уравнения (4).

Подстановка (11) в (4) дает

$$M[y] = \sum_{\substack{k=-L \ M}}^{L} P_k(a, b, c, A_0, ...A_n, B_1, ...B_{n-1}, D_1, ...D_n) R^k + \sum_{\substack{k=-M \ k=-M}}^{M} S_k(a, b, c, A_0, ...A_n, B_1, ...B_{n-1}, D_1, ...D_n) R^k R_z.$$
(14)

Если N = 2m, то L = N, M = N - 2. Если N = 2m - 1, то L = N - 1, M = N. Зная решения для коэффициентов $a, b, A_0, ..., A_n, B_1, ..., B_{n-1}, D_1, ..., D_n$ системы алгебраических уравнений

$$\begin{split} P_k \left(a, b, c, A_0, ...A_n, B_1, ...B_{n-1}, D_1, ...D_n \right) &= 0, \quad k = 0, ..., 2L, \\ S_k \left(a, b, c, A_0, ...A_n, B_1, ...B_{n-1}, D_1, ...D_n \right) &= 0, \quad k = 0, ..., 2M, \end{split}$$

Получаем точное решение уравнения (4) в виде (11), выраженное через эллиптические функции Вейерштрасса.

2. Точное решение двумерного уравнения Кавахары

Переписывая уравнение (4) в переменных бегущей волны

$$u(x, y, t) = v(z), \ z = x + C_1 y - C_0 t, \tag{15}$$

после интегрирования получаем

$$-(C_0 + \delta C_1^2)v + \frac{1}{3}v^3 - \sigma v_{zz} + v_{zzzz} = 0.$$
 (16)

Уравнение, содержащее только доминантные члены (16) имеет вид

$$\frac{1}{3}v^3 + v_{zzzz} = 0. (17)$$

Подставляя $v = A_k(z-z_0)^k$ в (17), находим, что общее решение уравнения (16) имеет порядок сингулярности n = 2. Таким образом, точные решения этого уравнения будем искать в виде

$$y(z) = A_0 + A_1 Y + A_2 Y^2 + B_1 \left(\frac{Y_z}{Y}\right) + B_2 \left(\frac{Y_z}{Y}\right)^2.$$
 (18)

С учетом (6), формула (18) может быть переписана в форме

$$y(z) = (A_2 + B_2)Y^2 + (A_1 - B_1 - 2B_2a)Y + A_0 + B_1a + B_2(a^2 - 2b) + \frac{B_1b + 2B_2ab}{Y} + \frac{B_2b^2}{Y^2}.$$
(19)

Подставляя (19) в (16), получаем систему уравнений для коэффициентов $a, b, A_0, ... A_n, B_1, ... B_n, n = 2$. Решая полученную систему, находим

$$A_{0} = 0, \quad A_{1} = 0, \quad A_{2} = 0,$$

$$B_{1} = 6\sqrt{2\sigma},$$

$$B_{2} = 6\sqrt{10},$$

$$a = \pm \sqrt{\frac{\sigma}{5}},$$

$$b = 0,$$

$$C_{0} = -\frac{4}{25}\sigma^{2} - \delta C_{1}^{2}.$$

(20)

С учетом найденных значений коэффициентов, решение уравнения (16) примет вид

$$y(z) = 6\sqrt{10}Y^2(z) + 6\sqrt{2}Y(z).$$

Здесь Y(z) – решение уравнения (6)

$$Y(z) = \frac{1}{2}a + \frac{\sqrt{4b+a^2}}{2} \tanh\left[\frac{1}{2}\sqrt{4b+a^2}(z+C_2)\right],$$

Подставляя сюда найденные а и b (20), приходим к выражению

$$Y(z) = -\sqrt{\frac{\sigma}{5}} + \sqrt{\frac{\sigma}{5}} \tanh\left[\sqrt{\frac{\sigma}{5}} (z + C_2)\right].$$

Подставляя найденное Y(z) в (20) и полагая $C_2 = 0$, получаем уединенно-волновое решение уравнения (16)

$$u = \frac{6\sigma}{\sqrt{10}} \sec h^2(\xi)$$
, где $\xi = \sqrt{\frac{\sigma}{5}} \left(x + C_1 y + \left[\frac{4}{25} \sigma^2 + \delta C_1^2 \right] t \right).$

3. Численный эксперимент

Приведем результаты численного исследования уравнения (4)

$$u_t - u^2 u_x - \sigma u_{xxx} + u_{xxxxx} = \delta \int_0^x u_{yy} dx,$$

где σ – постоянный коэффициент, функция u(x, y, t) считается периодической по координатам x. В начальный момент времени $u(x, y, t) = u_0(x, y, 0)$.

В расчетах принималось: $\sigma = 1$, $\delta = 1$. Было рассмотрено четыре различных случая задания начального возмущения. По координате x поддерживалось условие периодичности, на границах по оси y ставились условия $(\partial u/\partial y)_{\rm rp} = 0$.

При численном решении уравнения использовалась полунеявная спектральная схема, что автоматически обеспечивает периодичность вдоль оси x. Интегральный член рассчитывался в пространстве (x, y) [8]. В алгоритмической записи схема выглядит следующим образом.

1. Задается сеточная функция $u(i, j, n) = u(x_i, y_j, t_n)$, где $x_i = (i - 1)dx$, $y_j = (j - 1)dy$, $t_n = ndt$, dx, dy, dt – постоянные. Индекс *i* изменяется от 1 до N, j – от 1 до M. Величина k-го волнового числа равна $\xi_k = (k-1)dk$, $dk = 2\pi/(Ndx)$ – интервал между двумя соседними волновыми числами.

2. Для i = 1, ..., N, j = 1, ... M вычисляется вторая производная по направлению y

$$\begin{aligned} u_{yy}(i,j,n) &= \left[u(i,j-1,n) - 2u(i,j,n) + u(i,j+1,n) \right] / dy^2, \\ u_{yy}(i,1,n) &= \left[u(i,2,n) - 2u(i,1,n) + u(i,2,n) \right] / dy^2, \\ u_{yy}(i,M,n) &= \left[u(i,M-1,n) - 2u(i,M,n) + u(i,M-1,n) \right] / dy^2. \end{aligned}$$

После проведения этих подготовительных вычислений, для каждого фиксированного j = 1, ..M проводится последовательность операций 3-4, преобразование Фурье осуществляется по координате x при фиксированном значении координаты y.

3. Строится итерационный цикл. Под $\bar{u}(j,n)$ понимается вектор, состоящий из значений сеточной функции $u(x_i, y_j, t_n)$ в узловых точках вдоль оси x, то есть $\bar{u}(j,n) = \{u(1,j,n), u(2,j,n), ..., u(N,j,n)\}.$

$$\bar{u}_{s+1}(j,n+1) = F^{-}\left[\widehat{C}F^{+}(\bar{u}_{s}(j,n-1)) + \widehat{B}F^{+}(\bar{u}_{s}^{3}(j,n+1) + \bar{u}^{3}(j,n-1))\right],$$

$$\begin{split} \widehat{C} &= -\frac{1+dt(i\beta\xi^3+i\gamma\xi^5)}{1-dt(i\beta\xi^3+i\gamma\xi^5)},\\ \widehat{B} &= -\frac{dti\xi}{3(1-dt(i\beta\xi^3+i\gamma\xi^5))}. \end{split}$$

Здесь F^+ и F^- – прямое и обратное преобразование Фурье, соответственно.

Цикл прерывается, если выполняется условие $|u_{s+1} - u_s| / |u_s| < \varepsilon$, $\varepsilon \approx 0.01$, в нашем исследовании достаточно четырех итераций (s = 4).

4. Далее учитывается интегральный член

$$u(i,j,n+1) = u_{s=4}(i,j,n+1) + \frac{1}{2}\delta dt \sum_{l=1}^{i-1} \left(u_{yy}(l+1,j,n) + u_{yy}(l,j,n) \right) dx$$

В данном случае интеграл вычисляется методом трапеций. Также возможен и другой способ [9] вычисления интеграла правой части, тогда он принимает вид

$$u(i,j,n+1) = u_{s=4}(i,j,n+1) + \frac{1}{2}\delta dt F^{-} \left(\frac{1}{i\xi_k}F^{+}\left(\bar{u}_{yy}(j,n)\right)\right).$$

Предварительные численные эксперименты показали, что оба способа практически равноценны.

На этом заканчивается нахождение решения на новом временном слое, и алгоритм возвращается к п. 2.

В нашем исследовании были выбраны следующие значения параметров: N = 256, M = 41, dx = 0.25, dy = 0.25, dt = 0.01, dk = 0.0981. Устойчивость и сходимость метода проверялась вариацией параметров dt и dx. При изменении этих величин вдвое относительно вышеприведенных данных, получающиеся решения отличались не более чем на доли процента. Были рассмотрены четыре случая задания начального возмущения.

Случай 1. Начальное возмущение $u_0(x, y)$ задавалось в виде одинарного купола с амплитудой A = 12.0 (рис. 1).

$$u_0(x,y) = 12 \operatorname{sech}^2[\frac{1}{4}(x-x_0)]\operatorname{sech}^2[y-y_0].$$

Эволюция возмущения происходит следующим образом. Купол возмущения движется вперед (против оси x), одновременно расплываясь в стороны (по оси y), причем последний эффект преобладает. Движение вперед сопровождается расщеплением заднего фронта волны на части. С течением времени (t = 2 с) ближе к границам амплитуда возмущения нарастает до определенного предела (A = 8.2), расплывание в стороны образовавшихся максимумов приводит к появлению крестообразной структуры. На рис. 2 видна крестообразная структура, наслаивающаяся на группу волн, отщепившихся от заднего фронта возмущения. Высота креста в максимальной точке A = 6.5. Дополнительно была исследована эволюция более широкого (по оси x) гауссова импульса (рис. 3). Его распространение во многом подобно распространению узкого импульса с одним серьезным отличием: задний фронт широкого импульса не расщепляется и образующуюся за ним структуру видно без искажений (рис. 4). Также было замечено, что при уменьшении коэффициента дисперсии

 σ исходный импульс расщепляется на большее число тонких волн, а возмущения, составляющие крестообразную структуру, образуют с осью x больший угол.

Случай 2. Начальное возмущение задавалось в виде двух куполов, расположенных симметрично относительно оси *y* (рис. 5).

$$u_0(x,y) = 12 \left\{ \operatorname{sech}^2 \left[\frac{1}{4} (x - x_{01}) \right] \operatorname{sech}^2 [y - y_0] + \operatorname{sech}^2 \left[\frac{1}{4} (x - x_{02}) \right] \operatorname{sech}^2 [y - y_0] \right\}.$$

Сначала эволюция куполов такая же как и в случае 1: также происходит расплывание и движение вперед. Однако далее пики двухкупольного возмущения начинают взаимодействовать между собой. Это взаимодействие приводит к исчезновению первоначальных максимумов возмущения и образованию новых в середине и по краям фронта волны (рис. 6). Новые максимумы (их наибольшая высота A = 10.1) существуют недолго и вскоре исчезают, практически выравнивая фронт волны по амплитуде (рис. 7). Но через некоторое время пики образуются вновь (рис. 8). Как показали дальнейшие наблюдения, процесс образования и исчезновения пиков переднего фронта волны носит периодический характер. Интересно, что фронт второй волны эволюционирует подобно фронту первой и проходит через все этапы образования и исчезновения максимумов.

Случай 3. Начальное возмущение задавалось в виде точного решения двумерного модифицированного уравнения Кавахары (см. раздел 2)

$$u = rac{6\sigma}{\sqrt{10}} \mathrm{sech}^2\left(\xi\right),$$
 где $\xi = \sqrt{rac{\sigma}{5}}\left(x + C_1 y + \left[rac{4}{25}\sigma^2 + \delta C_1^2
ight]t
ight).$

Как и ожидалось, фронт волны распространялся без изменения формы с постоянной скоростью (рис. 9-10), что свидетельствует об адекватности проведенного численного моделирования.

Случай 4. Однако наибольший интерес представляет вариант задания начальных условий в виде двух волновых фронтов разной амплитуды A = 12.0 и A = 5.0, расположенных один за другим вдоль оси абсцисс (рис. 11). В этом случае наблюдаем классическое солитонное взаимодействие. Волна с большей амплитудой, двигаясь быстрее, догоняет волну с меньшей, упруго с ней взаимодействует и продолжает распространяться дальше без изменения своей формы и скорости (рис. 12–13).

Заключение

Факт существования солитоноподобных решений двумерного модифицированного уравнения Кавахары позволяет говорить о принципиальной возможности существования уединенных волн в реальных физических системах, описываемых этим уравнением, таких как тонкие цилиндрические оболочки. Другие обнаруженные эффекты: расплывание в стороны и образование крестообразной структуры, также могут найти отражение в реальных волновых процессах.

Библиографический список

- 1. *Kawahara T*. Oscillatory solitary waves in dispersive media // J. Phys. Soc. Japan. 1972. Vol. 33. № 1. P. 260.
- 2. *Марченко А.В.* О длинных волнах в мелкой жидкости под ледяным покровом // ПММ. 1988. Т. 52, вып. 2. С. 230.

- 3. Горшков К.А., Островский Л.А., Папко В.В. Взаимодействия и связанные состояния солитонов как классических частиц // ЖЭТФ. 1976. Т. 71, № 2. С. 585.
- Землянухин А.И., Могилевич Л.И. Нелинейные волны в цилиндрических оболочках: солитоны, симметрии, эволюция. Саратов: Сарат. гос. техн. ун-т, 1999. 132 с.
- 5. Weiss J., Tabor M., Carnevale G. The Painleve property for partial differential equation // J. Math. Phys. 1983. Vol. 24, № 3. P. 522.
- 6. *Кудряшов Н.А.* Точные решения нелинейных волновых уравнений, встречающихся в механике // ПММ. 1990. Т. 54, вып. 3. С. 450.
- Кудряшов Н.А. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos, Solitons and Fractals. 2005. Vol. 24. P. 1217.
- Землянухин А.И., Катсон В.М. Теория и практика спектральных методов решения уравнений с частными производными: учебное пособие Волгоград: Волг-ГАСУ, 2007. 56 с.
- Numerical recipes in C. The art of scientific computing. / Eds. W.H. Press, S.L. Teukolsky, W.T. Vettenberg, B.P. Flannery. Second edition. Cambridge : Cambridge University Press, 1992. 680 p.

Саратовский государственный	Поступила в редакцию	4.05.2008
университет им. Н.Г. Чернышевского	После доработки	19.06.2008

SOLITARY WAVES OF TWO-DIMENSIONAL MODIFIED KAWAHARA EQUATION

V.M. Katson

Equations of this type describe a number of real-life processes like wave motion under ice mantle or propagation of waves of longitudinal deformation in thin cylinder shell. Using «Simplest Equation Method» exact solitary-wave solutions of the two-dimensional Kawahara Equation were obtained. On the basis of implicit pseudospectral method the numerical investigation is carried out. Regimes of two-dimensional deformation waves with classic solitary behavior were discovered.

Катсон Владимир Маркович – родился в 1985 году в Саратове, окончил факультет нелинейных процессов Саратовского государственного университета (2007) по специальности «нелинейная физика». После окончания СГУ поступил в аспирантуру механико-математического факультета. E-mail:katson@griddynamics.com