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NONLINEAR RANDOM WAVES IN FLUID,
AND THE MAIN MECHANISM OF THEIR EXCITATION

P. S. Landa

Lomonosov Moscow State University

To describe the problem of the random nonlinear waves in fluid, we must know, exactly
or approximately, how occurs the process of the vortex separation. For this it is conveniently
to use models based on physical considerations and (or) some experimental data. The main
attention in this review will be attended to random waves, emerging, for example, at stall
flutter. Such waves often appear in fluid, and they are the main cause of many disasters in seas
and oceans.

As a rule, stall flutter is connected with the pulling phenomenon, and observed in systems
with two and (or) more degrees of freedom. In principle, in such systems both approximately
one-frequency (synchronous) mode, and many-frequency (asynchronous) modes (when each
mode oscillates with its natural frequency) are possible. But in the case of the pulling phe-
nomenon only one-frequency mode, corresponding to its natural frequency (see [1]) is stable.
Unlike to usual turbulence stall flutter is a self-oscillatory process.

The feedback in this process appears due to interaction between the fluid and the streamline
body.

It should be noted that wave motions in fluid can be of very complex character. In last years
a great interest appears to waves of an anomalously high amplitude – so called freak-waves,
and rogue-waves.

We assume that the main cause of such waves is also vortex separation.

Keywords: Nonlinear waves in fluid, vortex separation, stall flutter, disasters in seas and oceans,
pulling phenomenon, degrees of freedom, freak-waves, rogue waves, using the mathematical
models for approximate solution of the problem.

1. Introduction

It is well known that systems with random forces having a strong effect on the
investigated system are difficult both for analytical and numerical solution. In some cases
such solutions are impossible. The very important example is the phenomenon of vortex
separation and connected with it phenomenon of stall flutter. In this case to find even
average motion, as a rule, is impossible. Just such problems are considered in this paper
in detail. The consideration with using models allows us to understand the causes of many
disasters possible in such systems.
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There is a very important type of models, called by us «models of a phenomenon»
(see [2]). As a rule, equations describing these models are not isomorphic to the equations
for the simulated system, but they are possessed of a very important property: they are
based on experimental data which are known to us. Just such models are considered in this
paper. The existence of such models is conditioned by the universality of oscillatory and
wave processes. An assumption, that this universality exists really, and some reasonings
showing that it can exist, were made by L. Mandelshtam, S. Strelkov, and me. Although
these assumptions are not proved, numerous experiments show that they are valid. We
do not know any experiments showing that it is absent. The universality allow us to
understand the causes of the considered phenomena and find the means for attenuation of
their undesirable influence.

Due to the universality of oscillatory and wave laws (the most of experiments and
a great number of argumentative considerations show that this universality exist really)
[2–4], these disasters are of a similar character in different systems of such a kind. That
is why the main purpose of this paper lies in the consideration of causes of such disasters
and methods of controlling by them.

Special attention to these problems is attended last time in connection with a great
number of disasters caused by the stall flow of the lengthy bodies: wires, suspension
bridges, steel factory pipes, helicopter propellers, periscopes of submarines, compressor
blades, turbines in turbo-jet engines, ropes drawn down from ships into ocean and so
on. The vortex separation occurs under streamline of the blunt notched bodies. At such
streamline vortices are reflected from the inequalities of the body surface. It is evident
that such reflection is of a random character, and hereupon the reflected wave is random.
Owing to multiple reflection we obtain the bunch of random waves. Since we do not
know this randomness, and its behavior depends on time, we cannot describe this wave
analytically, i.e. we cannot write equations describing our problem. Many examples of
similar phenomena we can indicate in hydrodynamics and biology. That is why we have
called the corresponding problems unsolvable [5]. It is very important that we have often
a possibility to observe different manifestations of these phenomena in real life. Below we
give several real examples of the stall flutter resulted in catastrophes.

1. Not far from Lancaster there is a sea, where very fast tides exist. In these tides the
flow velocity changes randomly. It is known that these tides cause sometimes the
loss of people and cars. We assume that due to large velocity of there stall flutter is
excited. It is evident that the same might be in Ocean when there is strong wind.

2. As another example of real stall flutter was described in [6], where it is shown that
stall flutter of electrical conductors is excited due to wind.

3. Stall flutter of the helicopter’ screw. Such stall flutter is very unsafe. There is an
assumption that a famous Russian oculist S.N. Fedorov was met with a helicopter
accident in 2000 and died.

It should be noted that in last several years a great interest appears to waves of a
high amplitude — freak waves and Rogue waves [7–9]. We assume that the main cause of
freak and Rogue waves is also vortex separation. Our assumption may be conditioned by
universality of wave processes and some pictures of these waves. Further we will consider
some of such waves.
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2. Aeolian tones, vortex separation and stall flutter

The phenomena of vortex separation when lengthy bodies are flowed around by
fluid and connected with this sound emission are known many years as Aeolian tones
[10, 11]. They are described in many books and papers (see, for example, [1, 5, 12–19]).
It was found that these sounds are resulted from the reaction to the vortex-shedding that
creates a Kármán wake [20] downstream of the body, as sketched in Fig. 1.

This wake is precisely that reason which causes oscillations of the streamlined
body and the surrounding fluid. The phenomenon of the excitation of such oscillations
we will call stall flutter, in spite of the fact that the authors of some books (see, for
example, [18, 21]) distinguish the stall flutter, when oscillations of aerodynamical forces
are induced by the body oscillations, and forced oscillations (wind resonance), when the
Kármán wake exists also in the case of the immovable streamlined body.

It should be noted that vortices excite the sounds, and vice versa, sounds generate
the vortices, because, as shown in [22], acoustic and hydrodynamic waves represent two
wave solutions of the same equations of fluid dynamics in a moving medium.

More often the stall flutter excites when one of the natural frequencies of the body
oscillations is close or divisible to the frequency of vortex separation from this body
when it is immovable. Stall flutter was observed repeatedly for a diversity of technical
constructions, for example, many suspended bridges, steel factory pipes, helicopter’s
propellers, periscopes of submarines, compressor blades, turbines in turbo-jet engines,
ropes drawn down from ships into ocean and so on [1,14–19]. We believe that stall flutter
is one of the main reasons resulted in the sway of wires in the presence of wind. It may
be shown that the stall flutter may cause rotatory oscillations of wires which are similar in

Рис. 1. Schematic diagram of the Kármán wake for
streamlined flow around a cylinder

Рис. 2. The shot from the film about the catastrophe
of Tacoma bridge demonstrating its state for half hour
before its failure

its form to thermo-mechanical self-
oscillations considered in [2, 23]. It is
also known that stall flutter is the main
cause of many technical disasters. The
most known from them is the so called
Tacoma catastrophe that happened in 1940
[1,16]. That is why the study of stall flutter
is an important theoretical and practical
problem.

Experimental studies of stall flutter
and photos of some disasters caused by
him, for example, the shot from the film
about the catastrophe of Tacoma bridge
demonstrating its state for half hour before
its failure [1, 16] show that for this flutter
torsional oscillations are predominated,
whereas bending constituent is small (see
fig. 2). By this stall flutter differs markedly
from more known bending-torsion flutter
that was the main cause of the airplane
catastrophes at the earliest stage of their
appearance. However, as shown in [24],
taking into account of even very small
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bending vibrations can change essentially critical velocity and character of the stall flutter.
This confirms once more that the stall flutter phenomenon is very complicated, far more
complicate than more known flexure-torsion flutter. It is also seen that near the right
bridge footing many vortices are stalled. We assume that just these vortex separations
(each vortex separation is an impact) excite the bridge self-oscillations.

It should be noted that there are many works devoted to the stall flutter phenomenon,
but all of them are of a partial character, whereas a sequential description is absent.
Apparently, this may be explained by a great complexity of the problem and by the fact
that in airplane flight this form of flutter was primarily rare in occurrence [18], and
therefore it was studied not very intensively.

In detail monograph [18] it is written: «Classical type of the flutter is associated
with a potential flow and usually, but not necessarily, involves the interaction between
two or more degrees of freedom. Nonclassical type of the flutter, which is theoretically
analyzed with difficulty, may take place at stalling flow: periodical separation of the flow
with its adjacency again.» It should be noted that here the term «potential flow» is lame
because in a potential boundless flow of perfect liquid any flutter is impossible owing to
the fact that the sum of all aerodynamical forces is equal to zero (d’Alamber paradox) [25].
It is our opinion that the main difficulty of the stall flutter theory lies in the description of
the random backwash behind the streamlined body that appears at vortex separation.

3. Modeling of stall flutter

Any exact mathematical model of stall flutter is impossible. But we can use any
approximate model of some phenomenon attendant to stall flutter. It follows from experi-
mental data that such a phenomenon is the synchronization of the stall flutter frequency by
some periodic forcing. For an oscillator with additional circuit ours numerical calculations
have shown that such forcing can be caused by oscillations of the additional circuit.
Because the synchronization is possible only in self-oscillatory systems (see [26]), this
means that we will use a self-oscillatory model.

General principles of the construction of mathematical models for different
systems and their classification. General principles of the construction of mathematical
models for different systems are described in some Russian textbooks, mainly in [27, 28].
There the following types of models are considered: geometrical, physical, analogous
mathematical and simulated. It is asserted that all these models must have a general
foundation — isomorphism. It is evident that the definition given above is based on that
our object can be described by dynamical equations, i.e. that it is a dynamical system.
But up-to-date oscillation theory and nonlinear dynamics research often not dynamical
systems, but stochastic ones. Many systems cannot be described sufficiently by dynamical
equations and therefore they cannot be solved exactly neither analytically nor numerically.

In book by Blekhman, Myshkis and Panovko [29] some principles of model const-
ruction are also considered. There the following definition of a model is given: «an
object a′ is a model of an object a with respect to some system S of characteristics
(properties), if a′ is constructed (or is selected) for the simulation of a in according with
these characteristics.» In this book it is emphasized that «the modeling lies in the base
of all sciences.» This assertion is undoubtedly quite right, since any science cannot study
nature, as is written in school textbooks. It can study only models of natural phenomena.
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Another classification of models and their role in the nature study is given in [2].
There a very important type of models, called «models of a phenomenon» was introduced.
As a rule, equations describing these models are not isomorphic to the equations for
the simulated system, but they possess of a very important property: they are based on
experimental data.

4. «Unsolvable problems» as a special class

The impossibility to obtain equations for the process studied by us is precisely that
feature which separates the «unsolvable problems» from other complicated problems into
a special class. Such separation and the approach to the solution of these problems are
new. We do not know any similar works. Although models used by us and considered
systems are known in oscillation theory and engineering, the results obtained by us and
their explanation are new.

In this review we consider in detail an example of systems from this class: vortex
separation and connected with this the stall flutter phenomenon.

In the most of existing works the stall flutter is explained as the excitation of
resonant oscillations under the action of a periodic force caused by the vortex separation
and having a given frequency depending on the flow velocity, the size and shape of the
streamlined body. The force frequency is defined by the Strouhal number [30]. First of
all such an explanation comes into conflict with known experimental facts concerning
the stall flutter of sufficiently long ropes which are streamlined by flow with different
velocities in different sections of the rope. This conflict is connected with the fact that
stall flutter is not forced oscillations but self-oscillations.

Because of the similarity between stall flutter and self-oscillations, we can consider
a model of stall flutter as self-oscillations in a system containing both active and passive
oscillatory elements. A classic example of such a system is a van der Pol oscillator with
an additional oscillatory circuit [26, 31–35].

We have a good reason to believe that all peculiar properties of this process:
frequency pulling and characteristic dependencies of the oscillation amplitudes in the
oscillator and additional circuit as the frequency mismatch varies [11, 32, 35] have to be
observed in the case of the stall flutter too. Unfortunately, experimental comparisons of
these phenomena are unknown to us.

To signs the analogy between self-oscillations and the vortex separation process
from a streamlined body we indicate the following.

1. Pulsations of the velocity and pressure in the Kármán wake have rather narrow
spectrum with well-defined maximum.

2. The vortex separation process from a streamlined body may be synchronized on
the average if we excite oscillations of this body at a certain frequency that is
approximately divisible by the frequency of vortex separation from the immovable
body [12, 36–38]. The dependence of the vortex separation from the surface of
oscillating body on the mismatch between the mean body oscillation frequency f
and the frequency of vortex separation from the rest body is of the same character
as well known dependence of the frequency of synchronized oscillations of van der
Pol oscillator on the mismatch between the free self-oscillation frequency and the
external force frequency [26] (see fig. 3 constructed from the experimental data of
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Рис. 3. The dependence of the Strouhal numbers ∆St
(oscillating cylinder) on ∆St0 (immovable cylinder).
(Solid line) For the mismatch between the frequency
of vortex separation from oscillated cylinder f
and frequency of cylinder oscillations f0 (∆St =
= (f−f0)D/U0) on the mismatch between frequencies
of vortex separation from a rest cylinder fst and
f0 (∆St0 = (fst − f0)D/U0). (Dashed line) For
∆St =

√
(∆St0)2 − (∆St0)2s, where (∆St0)s is the

half-width of the synchronization region. (Dash-dot
line) For ∆St = ∆St0.

[12]). In this figure ∆St = (f − f0)D/U0

and ∆St0 = (fst − f0)D/U0 are the
mismatches between the frequencies of
vortex separation from the oscillating f
and the immovable f0 cylinders expressed
in terms of the Strouhal numbers, f is
the frequency of the cylinder oscillations,
D is the cylinder diameter and U0 is
the flow velocity. For comparison the
dependence ∆St =

√
(∆St0)2 − (∆St0)2s ,

where (∆St0)s is the half-width of the
synchronization region, is shown in the
same figure by dashed line. Such a
dependence should be valid in the case
of synchronization of a van der Pol
oscillator by small harmonic external
force. However, judging by the fact that
the synchronization region is rather wide,
the amplitude of the cylinder oscillations
was significant, that resulted in the more
steep dependence of ∆St on ∆St0.

It should be noted that, as in van der Pol oscillators, synchronization in average can
occur not only on the main frequency but on its harmonics and subharmonics [37]. We note
that the synchronization of a van der Pol oscillator on the harmonics and subharmonics of
an external force is considered in [26, 39].

5. Synchronization of the vortex separation frequency by the cylinder oscillations

The stall flutter phenomena may be conveniently considered by using the simplest
model of oscillating body in the form of an elastic circular cylinder of length l with fixed
ends and placed transversely to the flow directed along x-axis. In fluid flow on such a
cylinder transversal forces act in the plane orthogonal to the flow [19, 37, 40]. We can set
that one of third forces is directed along axis z. In this case the cylinder will be displaced
along x-axis.

As was noted, behind a streamlined cylinder the Kármán vortex wake is formed
[20], which for the Reynolds numbers 40 < Re < 150 is regular (the Reynolds number
is defined by the following formula: Re = V D/ν, where V is the flow velocity, D is the
cylinder diameter, ν is the kinematic viscosity), and for 150 < Re < 300 – turbulent. For
300 < Re < 2 · 105 the Kármán wake becomes again close to regular but with turbulent
bursts. After this for Re > 5 · 106 in the wake spectrum a dominating frequency of vortex
separation is also observed [41].

It should be emphasized that such alternation of the regions of different behavior
as a parameter changes is typical for chaotic self-oscillatory systems (the definition of
chaotic self-oscillatory systems and their dissimilarity from stochastic ones is given in
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Рис. 4. The dependence of the Strouhal number on
the Reynolds number for transversal streamline of an
immovable circular cylinder [19]

books [39, 42]). In particular, the region
300 < Re < 2 · 105 may be considered as
the region of intermittency. The aforesaid
testifies once more that forming the
Kármán wake may be modeled by a
weakly noisy self-oscillation process.

When stalling streamline occurs in
the direction of axis x with mean velocity
V , identical for all cylinder sections (the
assumption that all sections of the cylinder
are streamlined with the same mean
velocity is not principal). The problem
may be solved with using, for example,
Galerkin method [43] in the case when this
assumption does not valid. On this section
a periodic (or close to periodic) lift force Fz(t) directed along axis z acts. This force
represents a sum of two components: regular, independent of time, and random, slowly
changing with time.

In the case of immovable cylinder, for a wide range of the Reynolds numbers,
the frequency of the lift force is close to the vortex separation frequency ωstall, and the
frequency of drag force is close to 2ωstall [37]. The difference between mean periods
of lift and drag forces is conditioned by the fact that the mean lift force frequency is
defined by the distance between vortices only along one of the sides of the Kármán wake
(2λ), whereas the mean drag force frequency is defined by the distance between vortices
irrespective of the side of the Kármán wake (λ) (see fig. 1).

The mean frequency ωstall is connected with the Strouhal number St and the flow
velocity V by formula

ωstall = 2πSt/(DV ), (5.1)

where D is the cylinder diameter.
Experiments [19] show that for 40 < Re < 150 the Strouhal number initially

increases, then becomes approximately constant and equal to 0.2, and further again begins
to increase. In the range 2 · 105 < Re < 5 · 106 vortex wake is strongly turbulent, so
that the Strouhal number cannot be determined. For Re > 5 · 106, the Strouhal number
St ≈ 0.3. All of the said is illustrated by fig. 4, taken from [19].

As we know, any equations allowing us to describe rigorously the lift and drag
forces in the case of stalling streamline are absent in literature. Only the expressions
for peak-to-peak values of these forces are given [1, 19, 37, 40]. In all known books on
aeroelasticity (see, for example, [14, 19]) the amplitudes of these forces are found from
dimensionality considerations. For example, the amplitudes of the drag and lift forces (Ax

and Az) may be written as

Ax = cx(Re)Syx
ρV 2

2
, Az = cz(Re)Syz

ρV 2

2
, (5.2)

where ρ is the density of medium where the body moves, cz(Re) are factors depending on
the extent of the body streamlining (the worse is streamlining, the greater values of cz),
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and on the Reynolds number. In 5.2 Syx is the area of the body projection on the plane
yx, Syz is the area of the body projection on the plane yz. We suppose that Syx and Syz

are independent of y.

6. Model equations for stall flutter without regard for random forces

In our work [11] we have considered the oscillating cylinder as a string and retained
only a single oscillation frequency. In so doing we can change the cylinder by a material
point of mass m and write the equations of its oscillations along axes x and z in the form:

Üx + 2αx U̇x + ω2xUx =
Fx

m
, Üz + 2αz U̇z + ω2zUz =

Fz

m
, (6.1)

where Ux and Uz are the cylinder displacements along axes x and z, Fz(t) and Fx(t) are
the forces acting on the cylinder at the expense of the vortex separation in the directions
of x and z axes; ωx and ωz are the natural frequencies of the cylinder in the directions
of x and ωz , αx and αz are the damping factors in x and z directions. In the case of
difference of the oscillation frequencies in the directions x and z, resulting oscillations
of the cylinder may have rather complex form. It should be noted that force Fx is a drag
force, whereas Fz is a lift force.

It should be noted that because of the backwash behind the streamlined body that
always appears at vortex separation, on the cylinder always act random forces caused by
this backwash. We will denote these forces ηx(t) and ηz(t). These forces must be added
in the right side of Eqs. (6.1). Subject to these forces, Eqs. (6.1) becomes

Üx + 2αx U̇x + ω2xUx =
Fx

m
+ ηx(t), Üz + 2αz U̇z + ω2zUz =

Fz

m
+ ηz(t). (6.2)

Because any equations describing the vortex separation phenomenon and allowing
to find an expression for forces Fz(t) and Fx(t) are absent in the literature, we will
use for our calculations model equations for self-oscillations. Considering van der Pol
oscillator [39] as a self-oscillation system, taking account of the experimental fact that the
cylinder oscillations can synchronize the vortex separation, and neglecting the influence of
the backwash, we write the following model equations for forces Fx(t) and Fz(t) acting
on the cylinder:

F̈x − µ
(
1− a1F

2
x

)
Ḟx + ω2stallxFx = mxUx,

(6.3)

F̈z − µ
(
1− a2F

2
z

)
Ḟz + ω2stallzFz = mzUz,

where µ is a parameter responsible for the excitation of self-oscillations, a1,2 are coefficients
determining the amplitudes of forces Fx and Fz , mx,z are the coupling coefficient which
determines the influence of the cylinder oscillations on the vortex separation in x and z
directions, ωstallx and ωstallz are frequencies of vortex separation in the directions of axes
x and z.

We note that members mxUx and mzUz are responsible for the synchronization of
vortex separation by cylinder oscillations in x and z directions. It follows from Eqs. (6.3)
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that, in the case of the immovable cylinder and small µ the stationary values of Fx(t) and
Fz(t) are

Fx(t) ≈ Ax cosωstallxt, Fz(t) ≈ Az cosωstallzt, (6.4)

where Ax and Az are the oscillatory amplitudes.
It should be noted that formulas (6.4), in view of (5.2), are in full accordance with

the expressions for drag and lift forces given in [37]. In the simplest case the forces Fx(t)
and Fz(t) can be described by expressions (6.4).

Eqs. (6.2) and (6.3) define two self-oscillatory systems, each with two degree of
freedom. In particular, such systems are considered in [35, 39].

Further we will make examples of self-oscillatory systems with two degree of
freedom, which may be taken as models of stall flutter.

Versus the Reynolds number in x and z directions oscillations of systems described
by Eqs. (6.2) and (6.3) can be periodical, quasi-periodical or random.

In the next section we consider self-oscillatory systems with two degree of freedom
without regard for random forces.

6.1. Self-oscillatory systems with the main and additional circuits and pulling
phenomenon without regard for random forces. It is known that oscillators with two
degree of freedom may be described either two differential equations of the second order
either a single equation of the fourth order. Mandelshtam in his lectures [3] considered
different systems of the second order, but without friction. In well known works [31–34]
authors considered systems described by two second order equations corresponding to their
experimental installations. Schematic image of the installation with inductive coupling
between circuits, studied in [32] and [26] is given in [32]. Another installation with
capacitive coupling between circuits, studied by Teodorchik [34], is shown in [34]. Both
these installations consist from two oscillatory circuits and an amplifier. It should be
noted that equations describing oscillations in both installations differ from one another.
This difference results in the fact that the dependencies of frequency and amplitude on the
frequency mismatch are essentially different (compare Figs. 7 and 10, and also 8 and 11).

In this section oscillators with capacitive and inductive couplings between the
circuits will be studied as applied to stall flutter.

We consider a system consisting from two oscillators, i.e. a system with two degrees
of freedom. A consideration of such systems without friction was first conducted in famous
lectures on oscillations delivered by Russian academician L. Mandelshtam in 20–30th
years of last century [3]. In these lectures he showed that the behavior of such systems
is conditioned by so called connectedness but not by coupling. The connectedness cd is
defined as

cd =
ω1ω2∣∣ω21 − ω22∣∣ , (6.5)

where ω1 and ω2 are partial frequencies of the system considered. It is seen from here that
the closer partial frequencies the stronger is the connectedness. It should be noted that the
notion of the connectedness is also was given by Strelkov in textbook [4].

Simultaneously the problems of pulling phenomenon were investigated by Andronov
and Witt for oscillators with two inductively coupled circuits. For calculations authors
have used the Poincaré small parameter method [32]. Almost at the same time similar
investigations were conducted by Strelkov and Skibarko with using the qualitative methods
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[33]. Both in [32] and in [33] authors have considered only one-frequency mode. It was
found an area of pulling and discovered the phenomenon of quenching self-oscillations
in some region of the parameters. It should be noted that the term «pulling» was first
introduced in work [3] and until now it is used in all textbooks on oscillations (see, for
example, [34, 35]). Similar results, but by the averaging method, proposed by [44] and
developed by Mitropol’skii [45], were obtained later in [5, 6, 26].

6.2. The triode generator with additional circuit inductively coupled with
the main one. We consider the triode generator with an additional circuit studied by
Andronov and Witt [32] and described later in [35]. Its schematic image is shown in
Fig. 5. We see that in this generator the coupling between circuits is inductive.

Setting Ia = S0U1 − S1U
3
1 /3, we can write the equations for such a generator in

dimensionless coordinates. They may be easily transformed to the following:

d2x

dt2
− µ(1− αx2) dx

dt
+ ω21x = m1

d2y

dt2
,

d2y

dt2
+ εµ

dy

dt
+ ω22y = m2

d2x

dt2
, (6.6)

where

x =

√
M1S1

M1S0 −R1C1
U1, y =

√
M1S1

M1S0 −R1C1
U2

are dimensionless voltage drops across the triode grid and the capacitor C2, respectively,

µ =
M1S0 −R1C1√

L1C1
, ε =

R2L1C1

L2(M1S0 −R1C1)
,

m1,2 = M2C2,1/(L1,2C1,2) are the coupling coefficients, ω1 and ω2 are the natural
frequencies of the main and additional circuits, M1,2 are the coefficients of mutual induction
between the coils L1 and L and L1 and L2, respectively.

We will assume that the coupling coefficients m1,2 are small, of order of a conditional
small parameter. In this case we can use for approximate solution of Eqs. (6.6) the
averaging method proposed by Bogolyubov [44] and developed by Mitropol’skii [45,
46]. We apply this method in the form set forth in [26]. For using this method we
rewrite Eqs. (6.6) introducing dimensionless time τ = ωt, where frequency ω is unknown
frequency of self-oscillations and another conditional small parameter µ1 = µ/ω.

In this case Eqs. (6.6) can be conveniently rewritten as

Рис. 5. The schematic image of the triode generator
with two inductively coupled circuits

d2x

dτ2
+ x− µ1(1− αx2)

dx

dτ
= m1

d2y

dτ2
,

(6.7)

d2y

dτ2
+ εµ1

dy

dτ
+ ξy = m2

d2x

dτ2
,

where µ1 = µ/ω,

ξ =
ω22
ω21

(6.8)

is the mismatch frequency squared.
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Рис. 6. The dependencies of two oscillation frequencies
squared on the frequency mismatch ξ in zero
approximation for m1m2 = 0.1 (the Vien diagram)

6.2.1. Zero approximation. In
zero approximation with respect to small
parameters µ1 Eqs. (6.7) become

d2x0
dτ2

+ x0 −m1
d2y0
dτ2

= 0,

(6.9)

d2y0
dτ2

+ ξy0 −m2
d2x0
dτ2

= 0.

It should be noted that system (6.9) is a
conservative system. Its solution can be
set as

x0(τ) = Ax cosωτ, y0(τ) = Ayk cosωτ, (6.10)

where ω is the unknown frequency of self-oscillations, k is the distribution coefficient.
System (6.9) allows us to calculate its determinant D and the distribution coefficient

k = A:

D = (1−m1m2)ω4 − (1 + ξ)ω2 + ξ, (6.11)

k =
Ay

Ax
=
ω2 − 1

m1ω2
=

m2ω2

ω2 − ξ
. (6.12)

Systems of equations (6.7) and (6.9) describe the interaction between the self-
oscillatory system defined by function x(τ) and passive oscillatory system defined by
function y(τ). If oscillatory frequencies of these systems differ strongly from each other
then the systems will be weakly interacting, i.e. they will be sensibly independent. But
if the frequencies are sufficiently close, synchronization, i.e. one-frequency mode, can
appear.

Andronov and Witt [32] solved Eqs. (6.7) in one-frequency mode by using the
Poincaré method of small parameter [47] at the assumption that parameter µ1 is sufficiently
small. However, here we will solve equations (6.7) by the Krylov–Bogolyubov method,
as more preferable.

In zero approximation a solution of Eqs. (6.9) is

x ≡ x0 = A cos(ωτ+ 3x), y ≡ y0 = kA cos(ωτ+ 3y), (6.13)

where A is the amplitude of variable x, and 3x and 3y are phases of variables x and y,
and ω is the frequency defined from the condition of vanishing determinant of system
(6.9) defined by Eq. (6.11). Equation for the frequency ω has two real roots:(

ω(1,2)
)2

=
1 + ξ

2ξ(1−m1m2)

(
1∓

√
1− 4ξ2(1−m1m2)/(1 + ξ)2

)
. (6.14)

The dependencies of these roots on ξ are shown in Fig. 6. Such a graph is often
called the Vien diagram.

To consider the pulling phenomenon we must take into account the nonlinear terms
at least in the first approximation.
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6.2.2. First approximation. We will assume that the coefficient of nonlinearity
α is small, so that the term (1−αx2) dx/dτ can be linearized under the assumption that x
changes according to harmonic law. In addition we will suppose that frequencies ω1, ω2
and ω are sufficiently close, so that their differences are of order of a conditional small
parameter ε1. This can be possible only for ξ closed to 1.

In the first approximation we will seek a solution of Eqs. (6.7) in the complex form:

x = Ax exp (iωτ+ 3x) , y = Ay exp (iωτ+ 3y) . (6.15)

Substituting (6.15) into Eqs. (6.9) we obtain the following equations:

(1− ω2)Ax − iµ1ω

(
1− αA

2
x

4

)
Ax +m1ξω2Aye

i3 = 0,

(6.16)

iεµ1ωAy + (ξ− ω2)Ay +m2ω2Axe
−i3 = 0,

where 3 = 3y − 3x.
The condition of the equality to zero for the determinant of linear system (6.16)

gives us an approximate complex characteristic equation in the first approximation. Real
and imaginary parts of this equation are

(1− ω2)(ξ− ω2) + εµ21ω2
(
1− αA

2
x

4

)
−m1m2ξω4 = 0, (6.17)

ε(1− ω2)− (ξ− ω2)
(
1− αA

2
x

4

)
= 0. (6.18)

From Eq. (6.18) we can find αA2
x:

αA2
x = 4

(
1− ε 1− ω

2

ξ− ω2

)
. (6.19)

Substituting (6.19) into (6.17) we obtain the following bicubic equation for ω:

ω6 −
(
1 + 2ξ− εµ21 +m1m2

)
ω4 +

(
(2 +m1m2)ξ+ ξ2 − εµ21

)
ω2 − ξ2 = 0. (6.20)

Further, by using Eqs. (6.19) and (6.20) we calculate examples of the dependencies of ω2

and αA2
x on ξ for m1m2 = 0.1, µ1 = 0.1 and four values of ε (see Figs. 7, 8).

We see from Eq. (6.20) that it can have either one or three real positive roots. Our
calculations showed that for ε < ε4 and ξ ≤ ξ1(ε) Eq. (6.20) has a single such root, and
for ξ > ξ1(ε) it has three such roots (see Fig. 7 a, b, c). For ε more some value and all ξ
Eq. (6.20) has a single root (see Fig. 7 d).

We can see from Fig. 8 that for ε > 1 there exist the domains of non-existence of
the solutions found. In these domains the equilibrium states are stable for ε < m1m2/µ21,
i.e. for sufficiently large coupling factors.

It can be seen that the amplitude dependencies are of the same character as calculated
by Andronov and Witt [26, 32]. It should be noted that these dependencies are shown in
Fig. 8 were calculated nonmetering the stability.
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Рис. 7. Examples of the dependencies of ω2 on the frequency mismatch ξ for µ1 = 0.1, m1m2 = 0.1,
ε = ε1 = 0.5 (a), ε = ε2 = 1 (b), ε = ε3 = 2 (c) and ε = ε4 = 4 (d) in the case of an oscillator with
inductive coupling between circuits

Рис. 8. Examples of the dependencies of oscillation amplitudes squared αA2
x on the frequency mismatch ξ

for µ1 = 0.1, m1m2 = 0.1 and the values of ε the same as in Fig. 7 (ε = ε1 (a), ε = ε2 (b), ε = ε3 (c) and
ε = ε4 (d)) in the case of an oscillator with inductive coupling between circuits
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6.3. The triode generator with the capacitive coupling between circuits without
regard for random forces. A detailed consideration of the pulling phenomenon in
oscillators with capacitive coupling between circuits was first pursued by Teodorchik [34].
In Fig. 9 the same schema of an oscillator that was analyzed by Teodorchik in [34] is
shown. Setting dz/dt = (S0 − S1x

2) dx/dt, where z is the anode current, we obtain the
following equations for the oscillations in this schema [34]:(

1 +
C1

C0

)
x+ (R1C1 −MS0 +MS1x

2)
dx

dt
+ L1C1

d2x

dt2
=

C2

C0
y,

(6.21)(
1 +

C2

C0

)
y +R2C2

dy

dt
+ L2C2

d2y

dt2
=

C1

C0
x.

Equations (6.21) may be conveniently transformed to the following:

d2x

dt2
− µ(1− αx2) dx

dt
+ ω21x = m1y,

d2y

dt2
+ 2εµ

dy

dt
+ ω21ξy = m2x, (6.22)

where

x =

√
M1S1

M1S0 −R1C1
U1, y =

√
M1S1

M1S0 −R1C1
U2

are dimensionless voltage drops across the triode grid and the capacitor C2, respectively,

µ =
M1S0 −R1C1

L1C1
, α =

MS1

MS0 −R1C1
, ω1 =

√
1

L1

(
1

C1
+

1

C0

)
,

ω2 =

√
1

L2

(
1

C2
+

1

C0

)
, m1 =

C2

L1C1C0
, m2 =

C1

L2C2C0
, δ =

R2

2L2
,

Рис. 9. Schematic image of an oscillator with
capacitive coupling between circuits

m1,2 = M1,2C2,1/(L1,2C1,2) are
the coupling coefficients, M1,2 are the
coefficients of mutual induction between
the coils L1 and L and L1 and
L2, respectively; the dots mean the
differentiation with respect to dimensionless
time τ = ωt, where ω is a supposed
frequency of self-oscillations, ξ = ω22/ω

2
1

is the frequency mismatch squared.
Comparing Eqs. (6.22) with Eqs. (6.7)

for oscillator with inductive coupling
between the circuits, we see that they differ from one another. The main difference consists
in that in Eqs. (6.7) the coupling is realized via the second derivatives ẍ and ÿ, whereas
in Eqs. (6.22) it is realized via the variables x and y. This distinction results in different
equations for self-oscillatory frequencies and amplitudes.

As before, for approximate solution of Eqs. (6.22) we use the averaging method
proposed by Bogolyubov [44] and developed by Mitropol’skii [45, 46]. We apply this
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method in the form set forth in [26]. For using this method let us rewrite Eqs. (6.22)
introducing dimensionless time τ = ωt, where ω is a complex self-oscillation frequency,
and another conditional small parameter ε1 characterizing the difference between fre-
quencies ω and ω1:

ẍ− µ1(1− αx2)ẋ+ x− m̃1y = ε1

(
1− ω

2
1

ω2

)
x,

(6.23)

ÿ + εµ1ẏ + ξy − m̃2x = ε1ξ
(
1− ω

2
1

ω2

)
y,

where dots mean differentiation with respect to τ, µ1 = µ/ω, m̃1,2 = m1,2/ω2. It should
be noted that parameters µ1 and m̃1,2 are dimensionless.

Further, as in the last section, we reject in these equations terms of order of ε1. As
a result, we obtain the following equations:

ẍ− µ1(1− αx2)ẋ+ x− m̃1y = 0,

(6.24)

ÿ + εµ1ẏ + ξy − m̃2x = 0.

We will assume in Eqs. (6.24) that the coefficient of nonlinearity α is small, so
that the term (1 − αx2)ẋ can be linearized subject to that x and y change according to
harmonic low with complex frequency ω, i.e.

x = Ax exp (i(ωτ+ 3x) + c.c.) , y = Ay exp (i(ωτ+ 3y) + c.c.) , (6.25)

where Ax, Ay are amplitudes of variables x and y, and 3x, 3y are their phases.
Substituting (6.25) into (6.24) we obtain the following equations:

(1− ω2 − iωµ1)
(
1− αA

2
x

4

)
Ax − m̃1Aye

−i3 + c.c. = 0,

(6.26)

(ξ− ω2 + iωεµ1)Ay − m̃2Axe
i3 + c.c. = 0,

where 3 = 3x − 3y.
The condition of the vanishing of the determinant of linear system (6.26) gives a

complex equation coupling ω2, ξ and αA2
x/4:[

1− ω2 − iωµ1

(
1− αA

2
x

4

)](
ξ− ω2 + iεωµ1

)
− m̃1m̃2 = 0. (6.27)

Real and imaginary parts of this equation are:

(1− ω2)(ξ− ω2) + εω2µ21
(
1− αA

2
x

4

)
− m̃1m̃2 = 0,

(6.28)

(1− ω2)εωµ1 − (ξ− ω2)ωµ1
(
1− αA

2
x

4

)
= 0.
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Рис. 10. Examples of the dependencies of ω2 on ξ for µ1 = 0.1, m1m2 = 0.1, ε = 0.5 (a), ε = 1 (b), ε = 2
(c) and ε = 4 (d) in the case of an oscillator with capacitive coupling between circuits

Рис. 11. Examples of the dependencies of oscillation amplitudes on the frequency mismatch ξ for µ1 = 0.1,
m1m2 = 0.1, ε = 0.5 (a), ε = 1 (b), ε = 2 (c) and ε = 4 (d) in the case of an oscillator with capacitive
coupling between circuits
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From Eqs. (6.28) we obtain equation for frequency ω:

ω6 − (1 + 2ξ− ε2µ21)ω4 + (2ξ+ ξ2 − ε2µ21 − m̃1m̃2)ω2 − ξ2 + m̃1m̃2ξ = 0. (6.29)

We see that Fig. 10 differs significantly from Figs. 7 for oscillator with inductively
coupled circuits, whereas Figs. 11 and 8 are similar.

As for a generator with inductive coupling between the circuits, the dependencies
shown in Fig. 10 and 11 are constructed without taking into account the stability of the
solutions found. That is why they contain unstable pieces. Eqs. (6.23), (6.24) allow us to
investigate the stability.

7. Model equations for stall flutter

As a model for stall flutter we have taken a generator with additional circuit coupled
with the main by capacitor. In so doing for the vortex separation we have used model
equations with a noise sources ηx(t), ηz(t) in equations for Fx, Fz and model equations
with a noise sources ζx(t), ζz(t) in equations for Ux, Uz . These equations are

Üx + 2αx U̇x + ω2xUx =
Fx

m
+ ηx(t), F̈x − µ

(
1− a1F

2
x

)
Ḟx + ω2stallxFx =

= m1Ux + ζx(t),
(7.30)

Üz + 2αz U̇z + ω2zUz =
Fz

m
+ ηz(t), F̈z − µ

(
1− a2F

2
z

)
Ḟz + ω2stallsFz =

= m2Uz + ζz(t), (7.31)

where Ux and Uz are displacements of the additional circuit in x and z directions, Fx and
Fz are aerodynamical forces in x and z directions, ωx and ωz are the natural frequencies
of the additional circuit in x and z directions, ωstallx and ωstallz are the vortex stall
frequencies in x and z directions, ηx(t) and ηz(t) are white noises of intensity Ku, ζx(t)
and ζz(t) are white noises of intensity Kf .

Equations (7.30) and (7.31) describe two independent self-oscillatory systems each
of which possess two degree of freedom. In terms of oscillation theory these systems can
be considered as generators with additional oscillatory circuits connected with the main
ones by capacitors. It should be noted that terms m1U(x) and m2Uz are responsible for
the synchronization of vortex separation frequency by the additional circuits oscillations
Ux(t) and Uz(t).

For brevity we will consider a system described by Eqs. (7.30). This system describes
the interaction between the self-oscillatory system defined by Fx(t) and a passive oscillatory
system defined by Ux(t). If natural frequencies of each of this systems (ωx and ωstallx)
differ essentially, then the system will be weakly interacting one, i.e. variables Ux and
Fx will be practically independent. But if the frequencies are sufficiently close then
synchronization may be appear. Similar equations we can obtain for the system described
by Eqs. (7.31).

We will assume that ω2xUx ≪ Üx and ω2zUz ≪ Üz . In this case the first of
Eqs. (7.30) can be rewritten approximately as

V̇x + 2αxVx =
Fx

m
+ ηx(t), (7.32)

P.S. Landa
Изв. вузов «ПНД», т. 23, № 1, 2015 35



where Vx = U̇x is the velocity of the additional circuit in x-direction.
Equation for self-oscillations of force Fx can be solved approximately for small µ

in the absence of noise. In the case of immovable additional circuit, when Ux = 0, its
approximate solution is:

Fx ≈ Ax cos
(
ωstallxt+ 3x

)
, (7.33)

where Ax is an oscillatory amplitude of force Fx, 3x is its phase. It should be noted that
formula (7.33) is in the full accordance with the expression for lift force given in [37].

The first case was considered in two previous sections. Here we will consider the
case, when the frequencies differ essentially, i.e. the variables Ux and Fx are practically
independent. We will suppose that the oscillatory process in the additional circuit (Ux) is
incomparably more rapid than the vortex separation process (Fx), i.e. that ωx ≫ ωstallx.
A solution of Eq. (7.32) may be conveniently found as sums of two constituents: fast
constituent Vx and slow constituent defined by function Fx.

The following Fokker–Planck equation corresponds to Eq. (7.32) (see [26]):

∂w(Vx, Fx, t)

∂t
=

∂

∂Vx

[(
2αxVx −

Fx

m

)
w(Vx, Fx, t)

]
+

Ku

2

∂2w(Vx, Fx, t)

∂V 2
x

. (7.34)

We will assume that solution Eq. (7.34) differs slightly from w0(Vx), i.e.

w(Vx, Fx, t) = w0(Vx) + εw1(Vx)Fx(t), (7.35)

where w0(Vx) and w1(Vx) are described by equations

2αxVxw0(Vx) +
Ku

2

∂w0(Vx)

∂Vx
= 0, (7.36)

w1(Vx)
∂Fx(t)

∂t
− Fx(t)

∂

∂Vx

[
2αxVxw1(Vx) +

Ku

2

∂w1(Vx)

∂Vx

]
=

= − ∂

∂Vx

(
Fx(t)

m
w0(Vx)

)
, (7.37)

ε is a small parameter.
A solution of (Eq. 7.36) is

w0(Vx) = C exp

(
− 2αxV 2

x

Ku

)
, (7.38)

where C is an arbitrary constant.
As followed from (7.33) and (7.37), functions Fx(t) and w1(Vx) are periodic

functions of time with period T = 2π/ωstallx. Amplitude of function w1(Vx) is defined by
the right-hand member of Eq. (7.37). The greater is the derivative of w0(Vx) over velocity
Vx, the greater is w1(Vx). It follows from here that the location of maximum of a wave
and its value are defined by not the maximal value of the wave amplitude, but mainly by
the derivative of w0(Vx) over velocity Vx. It follows from here that the explanation of the
freak and rogue waves given in work [9] is not right for all waves.
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8. Conclusion

As followed from our results that for systems with two and more numbers od degree
of freedom the small parameter methods can give wrong results even for rather small
coupling between the degrees of freedom. However, Russian researcher Poznyak [48]
has shown that using the method of harmonic linearization gives results more close to
numerical and experimental.

Using of model equations for vortex separation from the surface of the oscillating
body allow us to calculate amplitudes and frequencies of self-oscillations excited due
to this vortex separation, i.e. to solve the problem on stalling flatter. In so doing the
effect of synchronization of the vortex separation frequency by natural oscillations of the
streamlined body was discovered. This effect requires experimental examination.
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НЕЛИНЕЙНЫЕ СЛУЧАЙНЫЕ ВОЛНЫ В ЖИДКОСТИ
И ОСНОВНОЙ МЕХАНИЗМ ИХ ВОЗБУЖДЕНИЯ

П. С. Ланда

Московсий государственный университет им. М.В. Ломоносова

Чтобы описать явление случайных нелинейных волн в жидкости, мы должны
знать точно или приблизительно, как происходит процесс срыва вихрей. Для этого
удобно использовать модели, основанные на физических соображениях и некоторых
экспериментальных данных. Основное внимание в этом обзоре будет уделено слу-
чайным волнам, возникающим, например, при срывном флаттере. Такие волны часто
возбуждаются в жидкости, и они являются одной из основных причин катастроф в
морях и океанах. Как правило, срывной флаттер связан с явлением затягивания, и
наблюдается в системах с двумя и (или) более степенями свободы. В принципе, в
таких системах возможны, как примерно одночастотный (синхронный) режим, так и
мультичастотные (асинхронные) режимы (когда каждая мода колеблется с собствен-
ной частотой). Но в случае явления затягивания только режим с одной частотой,
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соответствующей собственной частоте (см [1]) является устойчивым. В отличие от
обычной турбулентности срывной флаттер это автоколебательный процесс. Обратная
связь в этом процессе возникает из-за взаимодействия между жидкостью и обтека-
емым телом. Следует отметить, что волновые движения в жидкости могут иметь
очень сложный характер. В последние годы большой интерес представляют волны
аномально высокой амплитуды – так называемые аномальные волны и волны-
убийцы. Мы полагаем, что основной причиной таких волн является срыв вихрей.

Ключевые слова: Нелинейные волны в жидкости, срыв вихрей, срывной флаттер,
катастрофы в морях и океанах, явление затягивания, степени свободы, блуждающие
волны, катастрофические волны, использование математической модели для прибли-
женного решения задачи.
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