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B naHHOW paboTe M3y4aeTcs IMHAMHKA PACIPOCTPAHEHUS BOJHOBBIX ITAKETOB B MOJEIAX
HECKOJIbBKHUX BSaHMO}leﬁCTBy}OLHHX KBAaHTOBBIX 4YaCTHIL] C pasHbIMU BUJAMH IPOCTPAHCTBECH-
HOM Mopymsiiuu. [l onHOM YacTHIBI WJIM, YTO SKBHBAJEHTHO, MHOTHX HEB3aHMOICHCTBY-
IOIUX YacTHUIl, U3BECTHO, YTO B CIydYae MPOCTPAHCTBEHHOIO Oecrops/ika Bce COOCTBEHHBIC
COCTOSIHHSI CTAaHOBSITCSI JIOKAJM30BAaHHBIMH, a B CIydae KBa3HIICPHOANIECKOW HEOTHOPOIHOCTH
CYIIECTBYET IIOPOI Iepexosa K JIOKalu3aluy 110 CHiie HEeOQHOPOOHOCTH. B npyrom mpenens-
HOM Clly4ae — MHOTHX B3aMMOJEHCTBYIONIIMX YaCTHIl — 3aJadya pelagach B CPEAHEHONEBOM
npHOIMKEHUH, B paMKaX HEJMHEWHOro quckpeTHoro ypaBHenus Llpenunrepa. 3neck Habmro-
JIAJIOCh pa3pylIeHHe JIOKAIN3aluK 33 CYEeT HEIMHEIHOCTH, BO3HHMKAIONIETO JHHAMHYECKOTO
xaoca. OCHOBHBIMH HaOIIOJaeMBIMHU CBOHCTBaMH ObLIH CyOAN((Y3Us BOTHOBBIX ITAKETOB, HX
camonofoOue B aCUMITOTHYECKOM IIpefelie, 3aBUCUMOCTb IoKa3arens cyoaupysuu oT mo-
psiaKa HelnuHeWHocTH. B HacTosmel paboTe mokasaHo, 4TO 3TH CBOMCTBA 0OHApYKHBAIOTCS U
JUIsL HECKOJIBKMX KBAaHTOBBIX YACTHII B PEIIETKE ¢ 6ECIIOPSAKOM, IPH TOM, YTO YCIIOBHUS CPE/IHE-
HOJICBOTO IIPUOJIMKSHHS HE BBIIOIHEHBL. TeM He MeHee KBaHTOBBII Xaoc obecriedrBaeT moxo0-
HyI0 fuHaMHKY. [Ipy 3TOM moka3zarens cyOoandQy3nu yMeHbIIAeTCs IPU YBEIHMIEHUH TTOPsIIKa
B3aMMOJICHCTBHUS, TaK )K€ KaK U B HEIMHCHHBIX ypaBHEHMsX. B ciy4yae kBasunepuoauuecko-
ro nmoTeHIuala B MOACIIN HECCKOJIBKUX B3aHMO):[eFICTBy}OLLIHX qacTuIll HaGH}O}laeTCﬂ KBAaHTOBasA
peryisipHasi TUHAMUKA U ITOYTH OAaJUIMCTHYECKOE PaclpoCTpaHEeHHe BOJHOBBIX IakeToB. [Ipm
9TOM MaJasi 100aBKa Oecropsiika pa3pylIaeT KBAaHTOBYIO PEryISPHYIO AUHAMUKY.
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In this work we study the dynamics of wave packets propagation of a few interacting
quantum particles with different types of spatial inhomogeneity. Single particle or, equivalently,
many noninteracting particles are localized in the case of spatial disorder, and experience
localization—delocalization transition in the case of quasi-periodic inhomogeneity. In the other
limiting case of many interacting particles, the problem is solved in the mean-field approxima-
tion, which leads to discrete nonlinear Schrodinger equation. There localization is destroyed
due to dynamical chaos inherent to nonlinearity. It results in wave packets subdiffusion,
their self-similarity in the asymptotic limit, the dependence of the subdiffusion rate from
the nonlinearity order. We demonstrate that analogous features emerge in disordered lattice
even for two quantum particles due to quantum chaos, much away from the validity of the
mean-field approximation. The subdiffusion exponent decreases with the increasing order of
interaction, as found in nonlinear equations. On the contrary, in the case of a quasi-periodic
potential we find regular quantum dynamics and almost ballistic wave packets propagation.
Wherein a small additive of disorder destroys the regular quantum dynamics.
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Introduction

Localization of quantum particles or waves due to random (Anderson) or quasi-
periodic (Aubry—Andre) spatial inhomogeneity of the lattice potential is a fundamental
physical phenomenon manifested by light, sound, and matter waves [1-10]. To date, the
rigorous results are available for the case of non-interacting particles only, while the
complexity of the many-body localization problem leaves it essentially open, despite some
recent advances [11-13].

In this light, much attention is devoted to the computationally accessible case of
a few interacting quantum particles. The earlier studies of the two interacting particles
(2IP) in random lattices concluded that interaction inflates the single particle localization
length &1 up to another finite localization length E; [14-20]. For quasi-periodic potentials
the predictions differed from incremental increase of localization length to decrease of
localization length in the insulating regime [21-23].

The recent results reveal much more dramatic and unexpected effects of interactions.
First, it was shown that some of the 2IP states in quasi-periodic lattices can become
completely delocalized under the non-perturbatively strong interaction, giving rise to an
unconstrained wave packet propagation [24,25]. Second, in disordered lattices, it was
found that 2IP produce self-sustained subdiffusive propagation beyond the single particle
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localization length, provided that the disorder is weak and &, > &; [26]. This regime
was associated with the quantum chaos and high effective connectivity of states due to
interaction [26,27].

These findings intriguingly correlate with the results obtained in the mean field
approximations, which lead to the Gross—Pitaevsky type nonlinear wave equations [28,29].
There nonlinearity breaks localization and leads to subdiffusive wave packet propagation,
underpinned by nonintegrability and dynamical chaos [30-37]. The particular footprints of
the chaotic nature of subdiffusion are seen in the asymptotically self-similar expansion of
the wave packet [38-40] and the nonlinearity-dependent subdiffusion exponent [39,41].

In this paper we demonstrate that a few interacting particles can propagate beyond
the single-particle localization length in two main regimes, determined by the presence
or absence of quantum chaos [42,43]. Quantum chaos develops in random lattices and
shapes the self-similar wave packet profiles, which tails are localized exponentially, with
the corresponding length diverging in time. The pure three particle interaction does exhibit
subdiffusion but with a weaker exponent, completing the similarity to the classical nonlinear
chaotic spreading. In contrast, 2IP on quasi-periodic lattices do not develop a pronounced
quantum chaos, according to level statistics, and delocalize in a regular regime, as ballisti-
cally propagating plane waves. Its analogy for the nonlinear classical lattices is currently
not known. In case of mixed potentials, the regular propagation is broken already by weak
disorder.

1. Model and Numerics

We study the few particle dynamics in the framework of the Hubbard model with
the Hamiltonian

=3y [z;;Hz;j by bty + O (i)' (z;j)’“] 0
J

where Z);r and Bj are creation and annihilation operators of indistinguishable bosons at
lattice site j. Uy measures the k-particle on-site interaction strength. The on-site energies
are either random uncorrelated numbers with a uniform probability density function on
the interval e; € [—1W/2,W/2] as in the original Anderson problem, or quasi-periodically
modulated €; = W cos(2maj 4 0), as in the Aubry—Andre case.
For the 2IP case we make use of the vacuum state |0) and the basis |7, k) = B;rb,j\m
and write the 2IP wave function as ¥ = ) @; 1|7, k):
j.k
1Pk = € kPjk + Z((Pjil,k + Qjkt1), 2)
+

where €, = &; + €, + U0 and 0, is the Kronecker symbol.
For three interacting particles (3IP), when pairwise interactions are absent, Uy = 0,
the corresponding equations read:

1D km = € hmPikm + D (@j1km + Pjkttm + Pjkm1), 3)
+

where € 1, = & + €, + &5, + U30j i m- A mixture of two and three particle interactions
can also be considered, €; 1, = & + € + &n + Usdjim + Uz (81 + Okm + Ojm)-
However, we did not find qualitative differences with the 2IP case.
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In the absence of interactions, Uy, = 0, solutions to (2) break into a product of single
particle (SP) solutions that follow

Z(Pm = EmPm + Pm+1 + Pm—1- (4)

In the disordered case all eigenstates {A%)}T:Lm n of (4) are exponentially localized with
the maximal localization length & =~ 96/W?2 for W < 4 [3]. In the quasi-periodic case all
eigenstates are delocalized below the mobility edge, W = 2, and localized above, sharing
the same localization length & = [In(W/2)]~! [2].

Numerical integration of (2) and (4) is performed on finite lattices N x N and
N x N x N with the PQ-method [34], the particle identity appropriately made use of. The
initial conditions correspond to the particles placed at the adjacent sites. To characterize the
wave packet dynamics we calculate the one-dimensional probability distribution function
(PDF) of the particle density as PDF; = " |q;x|? for 2IP and PDF; = > |q; 4.m|? for

k k,m

3IP. We monitor the wave packet expansion computing its mass center m; = » ; JPDF;

and the second moment my = > .(j — m1)?PDF;. The system size is varied within
N = 5000...15000 (2IP) and N = 1000 (3IP).

2. Results

It has been previously found that in both types of localizing lattices, Anderson and
Aubry—Andre, interactions can induce propagation of two quantum particles much beyond
the SP localization length &; [24-27]. Fig. 1 presents the global picture of the regimes,
the brighter color corresponding to greater values of the wave packet second moment
ma, as measured after ¢ = 10° time of evolution from localized initial conditions. In the
disordered case the phase diagram is smooth and shows gradual delocalization, while in
the quasi-periodics case it consists of several sharp tongues. The details of 2IP expansion
also differ. In the Anderson model the wave packets propagate ballistically up to the SP
localization length, €;, and then make a crossover towards the subdiffusive spreading
up to the 2IP localization length &2 > E; (also believed to be finite), mao(t) o t%,

g m, g m,

0 2.0 4.0 U, 0 50 10.0 U,

Fig. 1. Phase diagrams of the 2IP localization for the (@) random and (b) quasi-periodic lattices as suggested
by the wave packet second moment my (color coded) after its long-term evolution (N = 1000, ¢t = 10°).
Dashed horizontal line in (b) indicates a SP metal-insulator transition. Black dots mark the points, for which
ma(t) is shown in Fig. 3, a, 5,a
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o~ 1/2[26,27]. These stages can be clearly seen in the respective PDF, cf. Fig. 2, a, and
the scaling of the wave packet second moment for the parameters marked in Fig. 1, a, cf.
Fig. 3, a. In contrast, 2IP in quasi-periodic lattices can become completely delocalized, as
demonstrated by the wave packet divergence and the formation of the system-wide two-
particle states [24,25]. The visual wave packet expansion does not present a slowdown on
the observable spatiotemporal scale, cf. Fig. 2, b.

We start the detailed analysis of the particle spreading with the Anderson model.
There two main observations lead to the conjecture of the quantum chaotic nature of 21P
subdiffusion: the high connectivity of the SP states due to interactions and the Wigner—
Dyson type level statistics [26].

Let us first explore the effect of the order of interaction on the spreading exponent
that is a trait of chaotic spreading in classical nonlinear lattices [39,41].

Consider diffusion of the norm between few-particle states composed of SP ones,
r=(ry,...,7%), s = (s1,...,8k). The diffusion rate D should be proportional to the
coupling between them, I'y 5, which can be written as [44]:

| (£|Hintls) |?
oy — ws]

o= S0 () (5)
J

where ;s are respective eigenfrequencies. It follows that D ~ U, ,3n2<k_1), where n is
the local norm density, PDF. For a one-dimensional expansion, the wave packet second
moment and norm density relate as ma ~ 1/n2. Substituting it into my = D t we finally
obtain

s =2m

)

)

my x t* o =1/k. 6)

The results of numerical experiments for the 3IP case (the numerics for 3IP in
case Uy # 0 reveals qualitatively the same results as for 2IP, and is not presented here)
clearly confirm the predicted decrease of the subdiffusion exponent for higher order of
interactions, a ~ 0.25 for a set of disorder strengths and Us = 2.0 (U = 0) as it is

lgPDF 1g¢
o 060

5.0
-4.0 40
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-16.0 0
0 2000 4000 6000 8000 n b 0 2000 4000 6000 8000 n

Fig. 2. Characteristic PDF evolution of expanding 2IP wave packets on (@) a disordered lattice, W = 1.0,
U, = 2.0, N = 10000, and (b) a quasi-periodic lattice, W = 2.02, Uz = 7.5, N = 10000. Note the
crossover from ballistic to subdiffusive expansion in (a) at about ¢ = 103, once the wave packet goes beyond
&1, and the persistently uniform expansion in (b)
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read from Fig.3, b, similar to the existing effect for the nonlinear classical lattices. At the
same time, the quantitative validation of the exponent in (6) remains unattainable given
the limited spatiotemporal scales of numerical observation, attainable in the 3IP case.

The other key trait of the nonlinear chaotic wave packet spreading is the approximate
self-similarity of solutions, in analogy to the nonlinear diffusion equation [38-40]. Remar-
kably, self-similarity is also discovered in the quantum disordered case. However, at
variance to the nonlinear case, the wave packet is well approximated by a decaying
exponent with the time-dependent localization length:

Wi ~ exp[—[l — ol /E(t)]. ()

Fig. 4, a illustrates self-similar expansion of the wave packet from a localized
initial state on a disordered lattice through snapshots at different times. It demonstrates
that the wave packet profile is well-described by the exponential decay at any time
moment; its slope is monotonously decreasing in time. It allows to introduce the dynamical

lgm, lgm,
6.0
4.0
4.0 3.0
2.0
2.0
1.0
0 0 1 1 1 1
0 10 20 30 40 50 Igr b 0 1.0 20 30 4.0 lgt
a

Fig. 3. Dynamics of the wave packet second moment, m2(t) from a localized initial state on a random
lattice. a — The curves for 2IP (from top to bottom) correspond to disorder W = 0.5 (circles), 0.75 (squares),
1.0 (down-triangles), 1.5 (up-triangles), and interaction Uz = 2.0 and Uz = 0 (dash-dotted lines), cf. Fig. 1, a.
Dashed lines exemplify ms ~ t“, a = 2.0 and a = 0.5. b — The curves for 3IP (from top to bottom)
correspond to disorder W = 1.0 (circles), 1.5 (squares), 2.0 (down-triangles), 3.0 (up-triagles), and interaction
Us = 2.0 (solid lines) and Us = 0 (dash-dotted lines). Dashed lines exemplify mo ~ t%, o = 0.2

0 5000 10000 n 0 200 400 600 800 n
Fig. 4. Self-similar expansion of the wave packet from a localized initial state on a disordered lattice with
exponentially falling out tails: |y;| ~ exp[—|l — lo|/E(t)]. @ — 2IP, W = 1.0, Uz = 2.0, grey symbols
demonstrate rescaling of PDF profiles at t = 10* (circles), ¢ = 10%° (squares), ¢ = 10° (down-triangles),
and ¢t = 10°° (up-triangles) to the final time ¢ = 10° according to (8); b — 3IP, W = 1.0, Us = 2.0
(U2 = 0), grey symbols demonstrate rescaling of PDF profiles at ¢ = 1025 (circles), ¢ = 10° (squares),
t = 10%® (down-triangles), and ¢t = 10" (up-triangles) to the final time ¢ = 10%® according to (8). The
dashed lines guide an eye. Insets: the dynamical localization length scales as E(t) ~ ¢, p ~ 0.29 (a) and
B~ 0.15 (b)
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localization length and study its evolution (Fig. 4, a, inset). The self-similarity of solutions
is established by scaling between the two moments of time, ¢; < t2, defined as follows:

PDF (|x — xo/, &) = PDF ((tl/tg)ﬁyx—xom), ®)

where xg mark the distance from the central peak, at which self-similarity of tails begins.
In particular, for W = 1,Us = 2 we find &() ~ tP, B ~ 0.29 (cf. Fig. 4, a, inset), which
corroborates well the theoretical expectation § = o/2. The 3IP model also displays this
kind of self-similarity (cf. Fig. 4, b). Let us now turn to the quasi-periodic case. Analysing
the wave packet expansion we find an almost ballistic growth of its second moment,
a ~ 1.5...1.7 for the parameters in the delocalization regime (Fig. 5, a), cf. marks in
Fig. 1, b. The diffusion exponent decreases only on the border of the spreading regime.
The wave packet profiles exhibit the wave fronts typical of the plain wave propagation in
the disorder-free lattice (Fig. 5, b).

To shed light on the nature of the difference to the disordered case, we study the
level spacing statistic for the systems of the size N ~ &;, for which full diagonalization is
numerically accessible (in particular, N = 100, 200, 300 were tested). There one recovers
the transition to the Wigner-Dyson type distribution P(s) = ws/2exp (—mns?/4) from the
Poisson-type distribution P(s) = exp (—s) as interaction prompted subdiffusive propaga-
tion, Fig. 6, a. In contrast, the level spacing statistics for quasi-periodic systems develops
an even a sharper peak about s = 0, manifesting regular quantum dynamics in different
delocalization tongues, consistently. There is indication that it drops to P(0) = 0 equally
sharp, pointing out the possibility of a mixture with weak chaos. Further numerical studies,
more massive then we could currently attain, are needed to validate the hypothesis.

Finally, we address the transition between the regular and chaotic few quantum
particle propagation. For that we introduce a mixed potential e; = (1 —¢q)Wg X
x cos(2maj + 0) + ¢gWpi;, C; € [-W/2,W/2] where g parametrizes the weights of
the pure quasi-periodic (W) and disordered (Wp) potentials. We choose Us = 4.5,
Wg = 2.1 and Wp = 1.0 such that in the limiting cases one has regular and chaotic
quantum wave packet spreading, respectively. Changing ¢ € [0, 1] we start from localized
initial conditions and obtain the second moment at ¢ = 10° as a function of ¢, cf. in

lgm, U= 0 . o t=1040

alU,=125 J [0 1=10%>
olU,=4.5
40 ay,=75
vU=12.5
20 14U,=15.5

lg PDF

00 1.0 20 30 40 50 1gt b 0 2000 4000 6000 8000 n
a

Fig. 5. Quasi-periodic lattice: @ — Dynamics of the wave packet second moment, m2(t) from a localized
initial state, W = 2.1, U, varied, N = 10000. The almost ballistic propagation persists in delocalization
region throughout free expansion, o =~ 1.5...1.7, Uz = 1.25, 4.5, 7.5. The exponent decreases on the border
of the region (U = 12.5, 15.0); b — Plane wave type expansion of the wave packet, W = 2.4, U = 4.5,
t=10% 10*°, 10°, 10>, 10°
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2.5 o Wigner-Dyson
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15 k >(Q) W=2.02 U,=75 4.0
35
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10-3 10-2 10-1 q

b

Fig. 6. a — Normalized 2IP level spacing distribution ((P(s)) = 1) for disordered and quasi-periodic lattices,
N = 100. In all cases wave packet spreading beyond &; is observed. Distinctly non-Poissonian in the
disordered case indicate quantum chaos, and the Poisson-type in the quasi-periodic one manifest regular
dynamics. Testbed Poisson P(s) = exp (—s) (circles) and Wigner-Dyson P(s) = ms/2exp (—ms?/4)
(squares) distributions are also shown. b — The wave packet expansion at ¢ = 10° depending on the balance
between the quasi-periodic (¢ = 0) and random (¢ = 1) potentials

Fig. 6, b. The results demonstrate that even a weak mixture of disorder destroys regular
propagation: the almost ballistic expansion at ¢ = 0 is taken over by a quickly saturating
growth of my(t) already for ¢ ~ 1072. The minimum of my at t = 10° is reached for
q ~ 0.05. Interestingly, going back from the purely disordered case, ¢ = 1, one also
observes decay of the final mg, suggesting that mixing potentials hampers either types of
pure spreading.

Conclusion

We establish the two fundamental regimes of 2IP spreading, determined by the
presence or absence of quantum chaos. Disordered potentials produce chaotic quantum
dynamics, that leads to subdiffusion, mgo ~ t*, a = 1/k for the k—particle interaction,
and self-similarity of the expanding wave-packets, || ~ exp[—|l — lo|/E(t)], E(t) ~ P,
B ~ a/2. It is worth drawing attention to the imprecise agreement between the theoretical
and numerically estimated subdiffusion exponent for the 3IP case, which reasons are
currently unclear.

Delocalization in quasi-periodic potentials is attributed to regular quantum spreading,
as it follows by the level spacing statistics and the almost ballistic expansion of plane
waves. Remarkably, even a weak mixture of disorder in quasi-periodic potentials destroys
this regime. Unexpectedly, already two interacting quantum particles are able to reproduce
all basic features of nonlinear wave packet subdiffusion in classical lattices, which are,
strictly speaking, are obtained only in the mean field approximation for the many-body
quantum dynamics. Even more puzzling is the second, regular spreading regime in the few
particle quantum problem for quasi-periodic potentials that does not seemingly possesses
an nonlinear classical counterpart. Beside open theoretical challenges we also forsee a
keen interest from the experimental physics of ultracold atomic condensates in modulated
potentials to our findings.

The Authors acknowledge RFBR No.15-42-02670, T.V.L. also acknowledges Dynasty
Foundation.
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FOcunos Hzope Hnvacosuy — pomuncs B 1993 roxy. Oxonunn UuaCcTHTYT HH)OD-
MAaIlMOHHBIX TEXHOJIOTH, MaTeMaTUKU U MeXaHuKU Hupkeropozckoro rocygapcTses-
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COB — HEJMHEHHas AMHAMUKA, BBICOKOIIPOU3BOJUTEIILHBIC BBIYUCIICHUS.

Poccust, 603950 Hmxanit Hosropon, np. 'arapuna, 23
Hixeroponckuii rocynaperseHHbH yHuBepcuret uM. H.W. Jlo6aueBckoro
E-mail: yusipov.igor@gmail.com

Jlanmesa Tamwvsana Braoumuposna — ponunack B 1982 roay. Oxonuuna Jly-
TaHCKHI HalMOHAIBHEIN yHHBepcuteT (2005), momayduna ydeHyo cTeneHs Dr. rer.
nat. B Texamueckom yauBepcurere Jpesnena, [epmanns (2013). B HacTosmee Bpe-
M1 SIBIISIETCSI CTapIINM IperiofaBareneM Kadeapsl TEOPUH YIPaBIeHNS U ANHAMHUKI
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