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Heanr Hamieil paboThl OBUTO M3yUYCHUE BIUSHUS PAa3IMYHBIX PUTMOB TOJIOBHOTO Mo3ra (TeTa, OeTa, raMMa PUTMBI
B amamazoHe dactor oT 5 no 80 I'm) Ha ynpTpamernnienHsle konebanus (¢ gactoroit 0.5 ' m HMKe), MPOSBIAIOMINECS B
YepeJOBaHUN COCTOSHUI C BBICOKOW M HU3KOH aKTHBHOCTBIO. DTH yIbTpaMeJIeHHbIE KoneOaHusl 0ObIYHO HAOMIONAI0TCA MPU
HEPBHOM JICATENILHOCTH B Y€JIOBEYSCKOM MO3Te M, B YACTHOCTH, B MPEPPOHTAILHON KOpe BO BpeMs oTabixa. CyuTaercs, 4to
OHHU TEHEPUPYIOTCS JOKAIFHBIMA KOPTHKAJIBHBIMU CETSAMH MPU HATHYHU HUMITYJIbCHBIX BXOIOB M HEHpOHHOTO Iryma. CTpyk-
Typa 3THX KojieOaHHI MMeeT CelupUIECcKyI0 CTATUCTHKY, @ UX XapaKTePUCTHKHU CBSI3aHbI ¢ KOTHUTUBHBIMH CIIOCOOHOCTSMH,
TaKUMH Kak, Harmpumep, 3GHEeKTUBHOCTh U eMKOCTh paboyeil mamsitd. MeTtonbl. B HalieM HcClieIOBaHHH MbI HCIIONB30BATH
paHee MOCTPOCHHYI0 MaTeMaTHIECKYIO0 MOJEIb, ONMCHIBAIOIIYI0 aKTHBHOCTh KOPTHKAJIBHOW CETH, COCTOAIIEE U3 TOIYIISIUI
MUPAMUIHBIX KJIETOK U MHTEPHEHPOHOB. JTa MoJeb Oblia pa3paboTaHa Ui OMUCaHHs IT00ATbHOTO BXOIHOTO BO3ICHCTBHS
HA JIOKAJIbHBIC CETH MPe(POHTATBHONW KOPBI U3 JPYTMX KOPTHUKAIBHBIX 00JAaCTel WM MOIKOPKOBBIX CTPYKTYp. JlnHamuka
MOJICTIH HMCCIICIOBAIach YHCIeHHO. Pe3yabrarbl. MBI OOHApYXKWIIH, YTO YBEIMYCHUE YACTOTHI CYIIECTBEHHO YBEIHYHBACT
BpeMsl IpeObIBaHMS B COCTOSIHUU C BHICOKOW aKTHBHOCTBIO M, CJICIOBATEIIBHO, MOBBIIACT YCTOHYUBOCTh CAMOMOICPIKUBAIO-
nielicst KoaebarenbHO aKTUBHOCTH B TaMMa-iuanazone. QOocyxaeHne. Mbl cuutaem, 4To Takue 3PQeKTsl ObLTH ObI MONE3HBI
U 00pabOTKH | Tepeaadn HHPOpMalul B KOPTHKAJIBHEIX CETAX C HEPAPXHYECKHUM TOPMOKCHUEM.
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Aim of the work was to study the influence of different brain rhythms (i.e. theta, beta, gamma ranges with frequencies
from 5 to 80 Hz) on the ultraslow oscillations with frequency of 0.5 Hz and below, where high and low activity states alternate.
Ultraslow oscillations are usually observed within neural activity in the human brain and in the prefrontal cortex in particular
during rest. Ultraslow oscillations are considered to be generated by local cortical circuitry together with pulse-like inputs
and neuronal noise. Structure of ultraslow oscillations shows specific statistics and their characteristics has been connected
with cognitive abilities, such as working memory performance and capacity. Methods. In the study we used previously
constructed computational model describing activity of a cortical circuit consisting of the populations of pyramidal cells and
interneurons. This model was developed to mimic global input impinging on the local prefrontal cortex circuit from other
cortical areas or subcortical structures. The model dynamics was studied numerically. Results. We found that frequency
increase deferentially lengthens the up states and therefore increases stability of self-sustained activity with oscillations in the
gamma band. Discussion. We argue that such effects would be beneficial to information processing and transfer in cortical
networks with hierarchical inhibition.
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Introduction

In the prefrontal cortex a canonical local circuit consists of pyramidal (PYR) neurons coupled
together with three types of inhibitory interneurons: parvalbumin (PV), somatostatin (SOM) and
vasoactive intestinal polypeptide (VIP) neurons (see schema in Fig. B1). Experimental results showed in
simultaneously recorded neural populations of the prefrontal cortex (PFC) superficial layers that activity
transits synchronously between high and low activity states lasting several to tens of seconds [1].
This constitutes resting state of activity and has been shown to be important for working memory
performance. Interestingly, in the context of low neural firing rates activities, crucial for cellular
regeneration mechanisms because of reduced metabolic costs [2], the slower is the switching between
high and low activity states, the higher is the rate of information transmission [3]. Therefore, ultraslow
activity fluctuations are computationally interesting in the context of quiet wakefulness, notably for
efficient detection of important signals in the environment, or for correct transmission of internal signals
mediating the consolidation of memories. Furthermore, the mechanisms involved in the generation of
ultraslow network activity fluctuations may have important implications for the mechanisms of the
generation of persistent activity during working memory tasks and for gating of sensory information
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during these tasks. Since specific oscillatory frequency bands modulate brain activity during working
memory tasks [4], we tested effects of an oscillatory background on PFC network bistable dynamics in
order to study the relative roles of different interneuronal types on persistent activity and gating.

1. Methods

In order to better understand mechanisms underlying the changes in endogenous activity under
oscillations, we modeled the layer II/IIl PFC local circuit. PV interneurons, target the axosomatic
region of pyramidal cells, exerting divisive effects on their output activities, while SOM interneurons,
target the dendrites of pyramidal cells, exerting substractive type of inhibition by increasing the spiking
threshold [5]. VIP interneurons in layers II/III exert inhibitory control of SOM and PV interneurons in
the PFC, with a stronger effect on SOM interneurons [6]. Model variables described the firing rates
dynamics of various neuronal populations (rpyr, rsom, rpv, and rvip) in a local PFC circuit [7], based
on [8] theoretical work for substractive vs divisive inhibition of pyramidal activity by SOM and PV
interneuron populations respectively. We further incorporated substractive inhibition between SOM,
VIP and PV populations [7]. Full model is given by following set of differential equation:

( dr
ts diyr = —Tpyrt
Wpyr—pyrToyr — Osom—pyr Isom + Lext —pyr — Ladapt +Losci
+ke(mpyrpyrrpyr_rpyr)Fe< pyr—pyr/ pyr som—pyr/ som ext—pyr adapt OSCIH)—}—O’SE(t),
d 1+ wpy—pyrTpv
7”
Ts dl;‘/ = —Tpv + (kz - 7ﬁpv)fpi ((Dpyrfpv'rpyr — Wpy—pvTpv — Wyip—pvTvip + Iextfpv) + ng(t)v (1)
drg
Ts C;;m = —Tsom + (kz - rsom)Fi(mpyr—somrpyr — Wvip—somTvip T Iext—som) + OSE(t)y
@rvip _ k F I t
Ts a —Tvip + ( i Tvip) i(wpyr—vipryr — Wsom—vipTsom T ext—vip) + OSE( )7

with Text—pyrs Lext—pvs> Lext—som» and Iexi—vip €xternal constant inputs to each neural population type.
Toscin 18 the sinusoidal component to the external input to PYR population, centered around 0, such
that: Iogeill = Imax SIn(27f). Imax is the oscillations amplitude, set at 10% of Iexi—pyr, While f is the
oscillation frequency. We set T, = 0.02 ms, close to each populations’ type membrane time constant [9].
F.(F;) is a sigmoid response function characteristic of an excitatory (inhibitory) population, which
gives a nonlinear relationship between input currents to a population, and its output firing rate.
Parameters k. (k;) modulate the amplitude of firing rate response to input current for pyramidals
(inhibitory) neurons. Here k; are constants and F,, F;, k. we taken as they were developed in [7]:

1
Fei(7,0e,) = T o@0e)” (2)
k ) 3
e(w) = T+ eG0) (3)

The w,_, (with x = pyr, pv or vip) are the self excitatory (or self inhibitory) synaptic coupling
of the excitatory (inhibitory) neural populations. The w,_, (with x # y, x = pyr, pv, som or vip and
Yy = pyr, pv, som or vip) are the excitatory (or inhibitory) synaptic coupling from one population to
another. We did not consider self-inhibition in SOM and VIP interneuron populations, since inhibitory
chemical synapses between those neurons are rarely observed [9, 10], and did not study PV and
SOM direct connections. The parameter o5 controls the strength of the random fluctuations of neural
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populations’ firing rate, and E(¢) is a white noise process. In simulations we used the Euler method
and this terms were produced by appropriate sampling of a normal distribution. In order to model
spike frequency adaptation from PYR neurons in the network model, we used the following equation,
adapted from [11]:

Al qant
Tadapt zzitap = _Iadapt + rperadapta 4)

where T,qapt and Jaqapt are the adaptation time constant and the adaptation strength of PYR population.
We chose Taqapt = 600 ms. We used an optimization algorithm, to select parameters (wzx — z, wx — ¥,
Jadapt and Ip_;) reproducing network bistability of pyramidal neurons and interneurons in awake
wild-type (WT) mice, with mean activities and durations close to the ones found experimentally.
This algorithm created random associations of values between parameters and computed an error for
activity properties between simulations and experiments. Details of the methodology are given in [11].
We selected the association of parameter values minimizing the error. The high activity/low activity
state durations are computed as for the experimental results (see Methods in [1]).

2. Results

We developed a computational model of the local PFC circuit that reproduces the dynamics of
resting activity seen in imaging experiments (see Figure 1) in both qualitative appearance of spiking
and in statistics of two activity states. This provided a basis for further investigation of the influence
of oscillatory inputs on transitions structure of the resting state. The model has following dynamical
structure (see [11] for full analysis): there is a bistability between a stable «low activity» where both
excitatory and inhibitory neuronal populations are nearly quiescent state and a «high activity statey,
where both populations produce significant level of activity. Both of these states are nodes. There is a
third fixed point of the system that is a saddle. The stable manifold of the saddle form the separatrix
between two stable states. For purposes of present study, the system is subjected to an additive noise
that produces random transitions between two states. We have previously shown [11] that an appropriate
choice of the noise strength can produce transition statistics (frequency and the life-times of two states)
that reproduce the experimental data [1]. Figure | shows an exemplary experimental data obtained
from calcium imaging (panels Al,2,3) using the model structured as shown in panel B1. Panel B3
shows an example of the pyramidal population firing rate dynamics as a function of time. Please note
the transitions between two stable states of activity; these transitions are due to additive noise and the
transition from the high-to-low states is also partially caused by the adaptation of the PYR firing rate
(see equation 2 and the I,qap¢ terms in system (1)). In panel B2 we visualize a simulated modulation
of spiking in a single pyramidal neuron that is produced by generating spike time using an Poisson
process with a time-dependent (instantaneous) rate A(¢) equal to firing rate of the pyramidal population
rpyr(t) seen in the dynamics of the model (1) as a function of time. We emphasize that the dynamics
are generated by the population model and the spike raster is a visualization of spiking of a potential
neuron constituent of this population.

We stimulated our optimized model with sinusoid inputs of moderate amplitude and variable
frequency. This stimulation was designed to mimic global input impinging on the local PFC circuit
from other cortical areas or subcortical structures. We wanted to know how the statistics of the activity
states are affected by the sinusoid input. Using computational modeling, we found that externally driven
oscillations influence the duration of high and low activity states and that this influence depends on
the frequency of the input. In figure 2, we can see that high frequencies (40 Hz, gamma oscillations)
increase the durations of both high and low activity states (H-states and L-states, respectively), while
low frequencies (5 Hz, theta oscillations) induce shorter H-states and L-states. Futhermore, we notice
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Fig. 1. Bistable firing rate dynamics of interconnected neural populations replicates ultraslow fluctuations recorded in the
PFC of WT mice. (A1) Two-photon image of GCaM P6 f expressing neurons, modified with permission from [1]. (Scale bar:
20 um). (A2) Spike trains of a population of simultaneously recorded cells in a WT mouse, obtained through deconvolution
of spontaneous Ca®* transients. 80% of the recorded cells are PYR neurons. Modified with permission from [1]. (A3) Time
varying population mean activity of the neurons shown in A2. The dashed red line delineates the threshold between high
and low activity states (H-states and L-states, respectively). Red periods correspond to H-states and blue periods to L-states.
Modified with permission from [1]. (See [1] for more info on the methods). (B1) Schematic of the studied circuitry. (B2)
Visualization of single pyramidal neurons activity from the population rate model. To produce this we use the mean population
rate produced by the simulated model and creating spike times according to the Poisson process with the rate A(t) = mean
population rate as a function of time. Note that since this rate fluctuates between the low and high activity states (see panel
B3), we see the same in the single cell firing rastergram. (B3) Time varying mean population activity of pyramidal neurons,
computed from the network model. We use the same method as [1] to delineate H-states (in red) and L-states (in blue)
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Fig. 2. Active state duration increases with frequency of input oscillations. State mean duration function of oscillation
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while the red line shows H-state mean durations (sec). The shaded areas are 4+ sem

that as frequency increases, the relative effect on the duration of the up-states becomes stronger relative
to the duration of the down-states. This means that as input frequency increases into the gamma range,
the network becomes more active (mean firing rates increase). During working memory tasks, gamma
oscillations correlates positively with memory maintenance, consistent with increased H-state durations
found in our results. We further predict higher rates of information transmission associated to gamma
bands, since our study associate them with slow switching between high and low activity states.

3. Conclusions

In this work we designed a minimal prefrontal cortical circuit model to analyze the dynamics
of firing rates of the multiple neuronal population circuit. We developed a dynamical parameter
optimization procedure for the circuit model. The optimization allowed us to identify model types
that reproduced the experimentally observed data. We previously conducted analysis of the resulting
model dynamics and found that the model was bistable with a slow alternation between high and low
activity states, just as in the data. We made a stochastic version of the model that with the optimized
parameters reproduced the statistics of the experimentally observed upper and lower sate durations.
We then focused on these statistics and designed oscillatory inputs to the model. Notably we projected
the oscillations to the pyramidal neuron population in the model. We then performed analysis of the
effects of the oscillation frequency on the state statistics. We found that frequency increase differentially
lengthens the up states and therefore increases stability of self-sustained activity with oscillations in
the gamma band. We argue that such effects would be beneficial to information processing and transfer
in cortical networks with hierarchal inhibition.
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