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The Springer Series in Synergetics was founded by Herman Haken in 1977. Since then,
the series has evolved into a substantial reference library for the quantitative, theoretical and
methodological foundations of the science of complex systems.

Through many enduring classic texts, such as Haken’s Synergetics and Information and
Self-Organization, Gardiner’s Handbook of Stochastic Methods, Risken’s The Fokker Planck-
Equation or Haake’s Quantum Signatures of Chaos, the series has made, and continues to
make, important contributions to shaping the foundations of the field.

The series publishes monographs and graduate-level textbooks of broad and general interest,
with a pronounced emphasis on the physico-mathematical approach.

Introduction

It would not be too much of an exaggeration to say that oscillations are one of the main
forms of motion. They range from the periodic motion of planets to random openings of ion
channels in cell membranes. They are observed at various levels of organization, have various
origins and various properties. Since Newton’s crack at the three-body problem and until just
a few decades ago, the range of phenomena regarded as oscillations were limited to damped,
periodic and quasiperiodic oscillations at best. A significant achievement of the second half of the
20th century is the admission of deterministic chaos and noise-induced rhythms as equals into the
oscillation family.

Nature is not based on isolated individual systems. It is rich in connections, interactions
and communications of different kinds that are complex beyond belief. With this, synchronization
is the most fundamental phenomenon associated with oscillations. It is a direct and widely spread
consequence of the interaction of different systems with each other. In most general terms, synchro-
nization means that different systems adjust the time scales of their oscillations due to interaction,
but there is a large variety of its manifestations and of the accompanying fascinating phenomena.
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Anyone writing a book on synchronization is faced with two problems: on one hand,
one has to deal with a huge amount of material on the particular aspects and effects; and on
the other hand, there is a need to formulate a universal approach that would embrace all the
particular cases. Fortunately, an essential contribution to the second problem has been made by
Pikovsky, Rosenblum, and Kurths in their recent book (A. Pikovsky, M. Rosenblum, J. Kurths,
Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press,
Cambridge, 2001)∗, that has provided a contemporary view on synchronization as a universal
phenomenon that manifests itself in the entrainment of rhythms of interacting self-sustained systems.
This viewpoint is in agreement with the approach developed since the time of Huygens, and is
completely shared by ourselves. In writing the present book we were motivated by the following
considerations:

• Recently, a large variety of new synchronization phenomena were discovered that are
inherent in complex (chaotic) systems, but do not occur in simple periodic oscillators. With the
modern fascination for the beauty and the complexity of the new effects, there is a tendency
to forget about the basic phenomena and theoretical results associated with «simply» periodic
oscillations. This is largely due to the fact that not all involved in the studies of these phenomena,
and especially younger researchers and students, have the respective education. It turns out to be
difficult to recommend a book, which would consistently present, equation after equation, the most
fundamental theoretical results on synchronization. Without such background, it is problematic
to analyze the synchronization of irregular oscillations from the general viewpoint, and to avoid
discovering «new» effects that often appear to be merely manifestations of the general principles
in a particular situation.

• There is a number of fascinating aspects of synchronization (phase multistability, de-
phasing, self-modulation, etc.), that are observed in a variety of systems and with various types
of interaction, that have not been discussed yet in the framework of the general concept of
synchronization.

In order to cover the above problems, our book contains two parts. The first part is a
consistent and detailed description of the classical approach to forced and mutual synchronization
that is based on frequency/phase locking and suppression of natural dynamics. It is oriented to the
people not familiar with the fundamental results of synchronization theory obtained by a number of
physicists and mathematicians, such as B. van der Pol, A.A. Andronov, A.A. Vitt, M.L. Cartwright,
A.W. Gillies, P.J. Holmes, D.A. Rand, R.L. Stratonovich, V.I. Tikhonov, P.S. Landa, D.G. Aronson
and co-authors, and published in their original works. It was our aim:

• To reproduce in every detail the derivations of the most fundamental results, which until
now were given only schematically and presented a significant challenge for beginners because
of the traditional brevity typical of the scientific works of the beginning and middle of the 20th
century. We have made every effort to make the reading easy for non-experts, to reduce to the
minimum the need to refer to other literature when following the calculations or the description of
geometrical effects, and to exclude expressions like «It is easy to show». As a result, the lengths
of the respective sections have increased substantially as compared to those in the original books
and papers, but we believe it was worth doing this and hope that the readers will find this material
helpful.

• To describe the same phenomena using different languages: the ones of physics and of
mathematics. In the early experiments on synchronization, the latter was detected by means of
listening to the volume of sound (organ pipes), visually observing the positions of pendulums
(clocks), and later Lissajous figures and Fourier power spectra on the oscilloscopes (electric
circuits). Thus, synchronization can be naturally understood in physical terms like power, frequency
or phase. On the other hand, the systems that synchronize can be described by non-linear mathe-
matical equations. Transitions that occur in coupled systems when their parameters change, can be

∗А. Пиковский, М. Розенблюм, Ю. Куртц. Синхронизация. Фундаментальное нелинейное явление.
Москва: Техносфера, 2003. 496 с. (Прим ред.)
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described in mathematical terms of bifurcation and stability theory. In this book we will analyze
the phenomena of synchronization and the associated effects using both languages and making a
clear connection between these different means of description.

• To generalize theoretical results to complex oscillations. An important achievement of
modern oscillations theory is the recognition of the role of irregular oscillations that can be either
deterministic or stochastic. We start by considering synchronization in simple periodic oscillators.
Then we move to chaotic and stochastic oscillations and show that in spite of their complexity,
they can synchronize according to the same mechanisms as periodic ones.

We will deem to have achieved our goal, if after reading this part the reader will be
convinced that very different types of oscillations obey the same mechanisms of synchronization,
although the particular manifestations can be different.

The second part is devoted to the general mechanisms and principles of synchronization,
describing them with regard to the non-linear properties of the particular classes of systems and
couplings. We discuss synchronization of anisochronous oscillations, when fast and slow motions
along the trajectory give arise to additional phase-shifted coexisting regimes and thus change
the bifurcational structure of the synchronization region. A separate chapter is devoted to the
concept of phase multistability and its development in the systems that oscillate with complex
waveform (essential for period-doubling and self-modulated oscillations) and have a particular
structure of their phase space. The latter might include regions of fast and slow motion, closeness
of the trajectories to some singular points, etc. (essential for bursting behavior). The concept of
synchronization is extended to the systems with several time scales of either deterministic, or
stochastic origin. Finally, we consider cooperative behavior of systems with a particular type of
coupling through the primary resource supply and discuss their applications.
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