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INFORMATION DYNAMICS IN NEURAL SYSTEMS: 
COMPUTING WITH SEPARATRICES 

Mikhail I. Rabinovich, Pablo Varona апа Valentin 5. Afraimovich 

Information processing in neural networks by computation with attractors (steady 
states, limit cycles, strange attractors) has been extensively discussed in application to many 
neural systems: central pattern generators, sensory systems (e.g. visual, olfactory), 
hippocampus, etc. Computation with attractors in a traditional way. faces а fundamental 
contradiction between robustness and sensitivity. In this paper we discuss а new direction in 
information neurodynamics based on experiments performed in the locust olfactory system, 
the orientation sensory system of фе marine mollusk Clione апа the hippocampal place cell 
networks. This new concept uses the transformation of the incoming spatial or identity 
information into spatio-temporal output based on the intrinsic switching dynamics of neural 
networks with nonsymmetric inhibitory connections. This is called the Winner-Less 
Competition Principle (WLC). The key feature о а network that computes with separatrices 
is the robustness against noise and the simultancous sensitivity of the sequence of switching 
to the incoming information. We present rigorous results about the stability of the sequential 
switching in the framework оё the Lottka-Volterra model. Because оё their fast reaction, the 
discussed neural networks are able 10 change their intrinsic dynamics 10 respond to new 
incoming information and solve many different functional tasks. Computation with 
separatrices can also be an optimal principle for the design of new paradigms of artificial 
neural networks. 

Introduction 

Plenty of experimental evidence show that information processing in neural 
systems, i.e. neurocomputation, can be modeled by dynamical systems. This is possible 
because two conditions are usually satisfied: (i) time is included in the computation, and 
(ii) the algorithm оё the computation is а set ов the deterministic rules. Operations such а5 
associative pattern recognition, sequential learning, generation оЁ spatio-temporal 
patterns (аг control behavior, and many others include time in the computation in а 
natural way. Some computation tasks, like encoding and presentation оЁ sensory 
information (visual, olfactory, etc.) formally can be done «algebraically», without time, 
by using «identity» or «spatial» coding (e.g. spatial convergence and divergence and 
filtering of a spatial message). However, even if it is not necessary in principle, real 
sensory systems include time in the encoding space to solve non temporal problems such 
as the encoding and presentation of spatial images. This happens because the spatio- 
temporal encoding of sensory information has many privileges for the next steps of the 
information processing (recognition, association with messages from other sensory 
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systems, and decision making for the behavior). Including time in the information 
processing оЁ spatial images provides such processing with robustness against noise and, 
at the same time, sensitiveness to the variation of the stimuli. In order to understand and 
model the process of computation in any neural system, we need to know how sensory 
signals (or other type of information) have to be fed into and how the result of the 
computation has to be read out. In the language of dynamical systems that means that we 
have to know what state of the system corresponds to the final result. It seems very 
natural to propose that the result of the computation has to be an attractor. Several models 
of neural systems that compute with attractors are well known. In such models the 
incoming information usually is а vector оё initial conditions and the result оё the 
computation is ап attractor. It can be а stable fixed point corresponding to а minimum оё 
the potential function like т the popular Hopfield model [1], а limit cycle [2], ог а 
strange attractor [3]. 

It is important to emphasize that many models of computation that use the 
incoming information just а ап initial condition for the dynamical system are not flexible 
and powerful enough. A more general computing approach would take advantage of the 
fact that the system can change its dynamics depending on the quality and the quantity of 
the incoming information. Such changing may follow the changing of the stimulus, which 
is also in many cases strongly time-dependent. 

In this paper we discuss a new approach for neurocomputation: computation with 
separatrices that is based on the WLC principle [4]. According to this approach the 
computation is a non-stationary stimulus-dependent dynamics of the neural network: a 
sequential switching from one semi-stable state to another. The mathematical image of 
the semi-stable state is a saddle fixed point or a saddle limit cycle. For a stable 
computation with separatrices, each saddle state has to have a one-dimensional unstable 
separatrix. The sequence оЁ switching is represented in е phase space of the dynamical 
system by a heteroclinic chain or a heteroclinic contour. Each stimulus has to build just 
one heteroclinic contour т the phase space оЁ the dynamical system, and each 
heteroclinic contour corresponds to a specific stimulus. The heteroclinic chain can be 

open (non-closed). 
The questions (аг we are going 10 discuss below are: (i) how а dynamical system 

that computes with separatrices sensitively responses 10 incoming signals, (i) what are 
the conditions for the robustness of such computation, e.g. the topological similarity of 
the perturbed and original heteroclinic contour, and (iii) how subsystems with closed 
heteroclinic contours interact with each other. In fact we are going to show in this paper 
that WLC neural networks that compute with separatrices are able to solve the 
fundamental contradiction between robustness and sensitivity. 

The Models 

The activity оё many different neural networks [4-7], can be implemented with the 
following dynamics: 

- N 
а, = a(o(H.S) - I pya +H (1)) + S (1) 1) 

where a>0 represents the instantaneous spiking rate оё the principal neurons (PNs) that 
are making the computation, p,, represents the strength of inhibition 1 i by j, КО] 
represents the action from other neural ensembles, and S,(r) represents the stimuli from 
the sensors. In many neural networks, the inhibition among PN is the result оё the action 
of inhibitory local neurons (LNs). Usually LNs also receive an external input and because 
оё this p;, can depend оп the stimuli. 
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The dynamical system (1) т the case с=1, H(1)=S()=0 is the Lottka-Volterra 
model. The dynamics of the system is well known when the matrix р is symmetric 
(p;=p;)- In this case the autonomous system has а global Lyapunov function [6,1] and 
every trajectory approaches опе оЁ the numerous possible equilibrium points. For 
example, 1Е фе inhibitory connections are identical, p,=p, p,=1, this system has only one 
global attractor, e.g. а, /[1+p(N-1)] for р<1, and N attractors: a=a;=1, a,=0 if p>1. 
No other attractors, e.g. limit cycles, ог strange attractors are present in the system. The 
situation is much more complex and interesting when the inhibition is non-symmetric: 
py#P; A detailed analysis is only possible in the case N=3 (see [8,9,4]). When p,>1, 
p;<I there exists а heteroclinic contour in the phase space of the system that consists of 
saddle points and one-dimensional separatrices connecting them. In some regions оЁ фе 
parameter space р„ such heteroclinic contour (or limit cycle in its vicinity) is a global 
attractor. If р depend оп the stimulus, e.g. as a result of a learning mechanism, the 
system (1) can generate different heteroclinic contours for different stimuli [4]. 

Suppose 

oo B 

Py = (B 1 © 
o В, 1 

and O<a,<1<p, апа k;=(-1)/(1-a). Then the heteroclinic contour is а global attractor if 
K, "K,%;>1, апа the nontrivial fixed point A(a,’a,,a,") is а saddle point. If к, k,%,=1, this 
fixed point becomes neutrally stable and there exists а family оё neutrally stable periodic 
solutions т е phase space. When x 'k, k,<1, A becomes а global attractor. The 
heteroclinic contour exists but loses И5 stability. It is important to emphasize that т the 
case K, k,k;>1 а small perturbation is able to destroy the heteroclinic contour and еп а 
stable limit cycle appears in its vicinity. This limit cycle is characterized by а finite time 
period оё switching among different states, in contrast with the infinite time оЁ motion 
along the heteroclinic loop. 

‘When N>3 the dynamics оЁ system (1) can be very complex and even chaotic [5]. 
We are interested here т the existence and stability оё е heteroclinic contours, which 
are the mathematical image of the winnerless competition behavior. Such contours may 
exist only in the nonsymmetric case €.g. рр when the saddle points (in the heteroclinic 
contours) satisfy certain conditions. 

Existence and stability of the heteroclinic contour 

In фе autonomous case, Ше system (1) is the canonical Lottka-Volterra model: 

в =е[1 - а#5 p,8)] @ 
This model, in fact, is a normal form for a neural network with inhibitory 

connections. Suppose that the dynamics of a network of N inhibitory coupled neurons 
with M dynamical variables y,(£)=(y0(1).....y* (¢)), i=1,...,N can be described in the 
form of the following system of ODEs: 

¥ =F0) - Z6,()0m3) + 5,0 ® 
where F 15 а nonlinear function that describes the dynamics оё ап individual neuron with 
M variables, GU(S)(y‘.,yj) is a nonlinear operator describing an inhibitory action of the j-th 

neuron onto the i-th neuron, S(1)=(S,(?),...,S,(#)) and (S,(2),...,S,(¢)) аге the vectors 
representing stimuli ю the network. ’l‘l'le stimulus here acts in two ways: (i) it adds the 
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perturbation S(r) into (3) аз ап external force, and (ii) it forms the matrix G,(S). As а 
result of averaging, a simplified model that describes the firing rate of the neurons can be 
written in the form (1), where o=-1 when there is no stimulus, and с=1 when the 
stimulus has а component аг neuron { [4]. In the absence оё the external 

force, §(t) the system (2) is just a subsystem of (1) for which all o=+1. Thus, we can 
formulate the stability conditions for the heteroclinic contours in the framework of this 
model. 

«Codimension one» saddle points. A heteroclinic contour consists of finitely 
many saddle equilibria and finitely many heteroclinic orbits connecti.ng this equilibria. 
Let’s denote by A, the equilibrium point (1,0,0,...,0), by A, the point (0,1,...,0), and by 
A, the point (0,0,...,1). For фе sake of simplicity ме assume that there 15 а heteroclinic 
orblt г„ connecting the points A, апа А i=1,...,N and A, =4, . It is simple to see that 
every pomt A, must have only one unstable direction. Otherwise the contour can not serve 
ав ап amacnng set. By direct verification it can be shown фаг A, satisfies this assumption 

provided that: 
р„ >1, k#i+l, апа @ 

Рн, <1. ®) 

(Here i+1=i if i=N). 
Moreover, if (4) апа (5) are satisfied еп the unstable direction at фе point 4, 15 

parallel (at that point) to the ort(0...010...0), where 1 corresponds to the ith index. 

An intersection of hyperplanes P,= П ууа =0 is а two-dimensional invariant 
manifold containing points А, and A, such that A 15 а saddle рош! оп P, апа 4,,, ва 
stable node оп P, The system (2) оп Р has the form: 

a,=afl-(a+p;a,)) Gy = (1@, +,4)] (6) 

and, from (4) ап (5), опе has p,,,;>1, p,,, <1 
This implies that there are no equilibrium points in the region a>0, a,,,>0 and, 

since a 1<0 В @, >>1, then it is sxmple to see а{ the separatrix, say T, оё the saddle 

point А musl go ю the attractor А., i.e. there is а heteroclinic connection between A, 

and А‚_, оп the plane P, (for the case N=3 see the proof in [8]). 

Saddle values. The point A, is а saddle point оп P,. One can write а тар from a 

transversal to the stable separamx into a transversal to the unstable separatrix along the 

orbits going through а neighborhood of A4, . In suitable coordinates (§n) it has е form: 

E=cn" (7) 

where п 15 а deviation from the stable manifold апд Е 15 the deviation from the unstable 

one, с 18 а constant and 

v, = - (Lpy ) (1-pyy) = (P /(1P ®) 

is the «saddle value» [10]. 1Ё v, >1 then the тар (7) is а local contraction апа P; 18 а 

dissipative saddle. If v, <1 then г7) 15 а local expansion. 

Stability of the heteroclinic contour. The following result tells us that the 

contour r_U T, vA, сап be ап attractor. 1 
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Theorem 1. Assume that conditions (4), (5), (6) are satisfied апа 

e l-[:ls)[(Pim“l)/(l‘Pmi)] >1 ) 

(here i+1=1 if i=N). Then there is а neighborhood U о{ the contourT such таг for any 
initial condition #=(a,,...,a,%) with @5>0 опе has dis{(a(t),r)—0 аз t—x where a(t) is 
the orbit going throughd. 

The proof of the theorem is based on the construction of the Poincaré map along 

orbits in а neighborhood of the contour Г (see [11]). 

Birth of a stable limit cycle. Robustness 

A direct corollary of Theorem 1 is the possibility of the birth of a stable limit cycle 
in ап appropriately perturbed system. Consider the system 

& =а, П- @+З p, @) + 2(6 (10) 
Ч 

that coincides with (2) for e=0, where a=(a,,...,a,) and ¥, 15 а smooth function, i=1,...,N. 
For small e>0 the system (10) has saddle equilibrium points A, and separatrices I, (the 
half оё W,V such that A, —A, а5 е->0 and И, T, DT, ,, here It means the topological 
limit, i.e. the set оё the accumulation points). 

Theorem 2. Assume that the conditions of Theorem 1 are satisfied, 

(U о =T а) 
апа аг least one of the separatricesT,, is not а heteroclinic orbit. Then for апу sufficiently 
small в>0 the system (10) has а stable limit cycle L, (in a neighborhood of Г) зисй that 
It,_L=T. 

The proof оё this Theorem can be done in the standard way, i.e., by construction оЁ 
the Poincaré map and by showing that this map is a contraction in an absorbing region. 
The condition (11) (or а similar condition) is necessary and sufficient for the existence оЁ 
an absorbing region [11]. 

Numerical results show that the system (10) where W (а)20 satisfy the condition 
(11) and has a stable limit cycle (see Fig. 1). In this example, the simulations were 
performed with the following equations: 

й №6 
а, =а‚(1-2/=1 pilai) + вай,з (12) 

where i=1,2,...,6 апа i+3 = i-3 1Ё i>3. We used the following values оё Ше connection 

matrix pils(): 

P13 = Pys = Psy = 5.0; р =Py =P, = 2.0; 

Р = Род = уа = Раз = Р = Pes = 153 (13) 

Р = Роз = P33 = Рад = Pss = Pes = 1.0 

with e=0.01.



Fig. 1. Small 3D projection оё the 6-dimensional system (12) showing examples of trajectories falling into 
the limit cycle from different initial conditions. As the numerical results indicate, this limit cycle № the 
vicinity оё the former heteroclinic contour is а global attractor 

Computation with separatrices in the olfactory system 

We have used observed features оё olfactory processing networks [12] а5 а guide 10 
the study оЁ computation using competitive networks. In Figure 2 ме show the 
simultaneously recorded activity of three different projection neurons (PNs) in the locust 
olfactory system, i.e. antennal lobe (AL), evoked by two different odors: despite similar 
PN activities before the stimulus onset (the result of the action of noise) each odor evokes 
а specific spatio-temporal activity pattern (аг results from interactions between these апа 
other neurons in the network [12]. WLC networks produce identity-temporal or spatio- 
temporal coding in the form of deterministic trajectories moving along the heteroclinic 
contour. The saddle states in this case correspond to the activity of specific neurons or 
groups of neurons and the separatrices connecting these states correspond to sequential 

switching from one state to another. 
From the experimental results we infer that a stimulus acts in two principal ways as 

we hypothesize above: (1) it excites a subset of projector neurons; (2) it modifies the 
effective inhibitory connections between е projector neurons аз а result оё the activation 
of the inhibitory interneurons that connect different PNs. The intrinsic dynamics of these 
neurons is governed by many variables corresponding 10 ion channels and intracellular 
processes. Such detailed description however is not needed to illustrate е principle оЁ 
«coding with separatrices». We need only 10 capture the «firing» ог «not-firing» state оЁ 
the component neurons. We thus simplify the model ю ап equation for the firing rate 
a(t)>0 оЁ neural activity, and thus we arrive 10 model 1. 

When the inhibitory connections are not symmetric, the system with N competitive 

neurons has different heteroclinic contours depending on the stimulus. The heteroclinic 
contours are global attractors in the phase space ап сап be found for а range оЁ values оЁ 

p,(S). This implies that 1Е the stimulus is changed, another orbit in the vicinity оЁ the 
heteroclinic contour becomes а global attractor for this stimulus, апа guaranties а big 
capacity оё the spatio-temporal representation оЁ the odors [4]. 
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Fig. 2. The temporal patterns produced by three simultaneously sampled PNs in the locust antennal lobe 
when two different odors are presented during the time interval from 1000 to 2000 msec. The horizontal 
bar indicates the time interval when the stimulus was presented (see [12] for details) 

Our numerical simulations [12] show that the network produces different spatio- 
temporal patterns in response to different stimuli and model the real data from the 
antennal lobe of the locust. 

Chaotic dynamics of competitive patterns: hunting 
behavior of Clione 

Neural networks with WLC dynamics аге able 10 generate new information to 
answer a simple external signal. Such information can be used for the organization of 
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complex activity and, in particular, chaotic behavior оЁ some animals. Let us consider the 
hunting activity оЁ а marine mollusk Clione. This mollusk is а predator lacking а visual 
system. It feeds оп а small mollusk, Limacina. The hunting behavior is а random search 
for prey: Clione «scans» the surrounding space in order 10 locate and catch е ргеу. Such 
behavior is turned оп by the smell оё the Limacina. The main role 1 the organization оЁ 
such motion оё Clione is played by а sensory neural network inside е statocyst (see Fig. 
3). The statocyst is а special sensory organ responsible for the orientation т е 
gravitational field [13]. 

It is well known from the physiological data that the statocysts have up to 12 
receptor neurons (SRNs) that are coupled with inhibitory synapses [13]. These neurons 
respond to the pressure exerted by the statolith, а stone located inside е statocyst. If no 
information about a prey (received by the chemical receptors) is present, the receptor 
neuron D (down, see Fig. 3) is excited by the statolith and it inhibits other SRNs. As а 
result, the information generated by D SRN arrives to the corresponding Central Pattern 
Generators (CPGs) that control the tail and wing movements. These CPGs establish the 
habitual «head up» position of Clione’s body. If the Hunting Central Neuron (HCN) 
receives a message from the chemo-sensors about the presence of a prey, HCN excites 
some SRNs and inhibits others. The behavior оё the Clione in this case does not depend 
оп the direction of the gravitational field апа it moves 1 а random-like trajectory. 

For the phenomenological modeling of the statocyst «hunting» dynamics we can 
neglect the statolith inertial dynamics and take into account the only key point: the 
position of the mollusk’s body uniquely depends оп the message that SRNs are sending to 
the central neurons (аг produce the commands to the CPGs. Thus, ав а starting point, we 
consider just a SRN network under the action of the HCN excitation. We suppose that, as 
а result оё the HCN stimulation, all SRNs («left», «right», «back», «front», «down», апа 

«up») are in the same situation: they receive and send two inhibitory synapses (see Fig. 3, 
right panel). 

The dynamics оЁ the SRN’s network can be described by model (1). In this case, 
a>0 represents the instantaneous spiking rate оё the receptor neuroni, Н () represents the 
stimulus from the hunting neuron to neuron i, and S(z) represents the action of the 
statolith on the receptor that is pressing. When there is no stimulus from the hunting 

Fig. 3. Left panel: schematic representation of the statolith (STL) motion exciting different receptor 
neurons inside the statocyst. Right panel: inhibitory connections used т this network (thicker traces mean 
stronger inhibition) 
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Fig. 4. Projections о? the attractor from the six-dimenional phase space 1 two different three-dimensional 

spaces 

neuron (H=0,Vi) ог the statolith (8,=0,¥i), еп o(H,S)=-1 and ай neurons are silent; 

o(H,S)=1 when е hunting neuron 15 active and/or the statolith is pressing one of the 

receptors. In our simulations, we have used the values p,0 specified in (13). 

When there is no activation of е sensory neurons from the hunting neuron, the 

effect of the statolith (S, #0) in this model 15 10 induce а higher rate of activity on one of 

the neurons (the neuron i where it rests for а big enough S, value). We assume that this 

higher rate оё activity affects the behavior of the motoneurons to organize the head up 

position. The other neurons are either silent ог have а lower rate оё activity and we can 

suppose that they do not influence the posture of Clione. 
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When the hunting neuron 15 active а completely different behavior arises. We 
assume that the action оё the hunting neuron overrides the effect оЁ the statolith апа thus 
8§20, Vi. The dynamical system (1) with the p;; values specified above (see also Fig. 3) 
and with а stimuli from the hunting neuron given, for example, by 
=(0.730,0.123,0.301,0.203,0.458,0.903) has а strange attractor 1 the phase space (see 

Fig. 4). This means that the SRN network generates new information (a chaotic signal 
with positive Kolmogorov-Sinai entropy) in the presence of the prey, which controls the 
CPGs and, in fact, organizes the random-like behavior of Clione. 

The origin оЁ the chaoticity in such dynamical system can be explained in the 
following manner [5]: due to е diversity in the strengths оё the inhibitory connections 
we may consider the complete network as two weakly coupled WLC triangle networks. 
Independently each оё them has а closed heteroclinic loop (see Fig. 1), which becomes а 
limit cycle under the action оЁ а small perturbation (for example, а stimulus). The 
periodic oscillations corresponding to these limit cycles have, in general, different 
frequencies that are extremely sensitive 10 the distance to the heteroclinic loop in the non 
perturbed system (such oscillations are strongly non-synchronous). As we showed the 
weak interaction of these WLC triangles (nonlinear oscillators) generate chaos 1 wide 
regions of the control parameter space. New experiments have confirmed the validity of 

the model [14]. 

Discussion 

We have tried to show that the computation with separatrices based on the WLC 
principle is a very natural and powerful strategy for information processing in real neural 
systems. Any kind of sequential activity can be programmed by a network with stimulus 
dependent nonsymmetric inhibitory connections. It can be the creation of spatio-temporal 
patterns оё motor activity, the transformation of е spatial information into spatio 

temporal information for successful recognition and many other computations. In 

addition, we wish to mention that two important computational functions can be 

successfully implemented by computation with separatrices. These are: (i) sequential 

memory storage, ап (ii) feature binding. 
In reference [15] the authors suggest а new biologically-motivated model оЁ 

sequential spatial memory which is based on the WLC principle. Each stimulus event 

(visual image, odor, etc...) is represented by а saddle point in the phase space оЁ the 

system, and а network of one-dimensional separatrices leads the system along the 

sequence оЁ events in е specific episode. After the learning process, such system 15 

capable of ап associative retrieval оё the pre-recorded sequence оЁ spatial patterns. 

A binding problem occurs when two (or more) different events, e.g. scenes, 
features, or behaviors are represented by different neural ensembles simultaneously, and 
for some reason they are all connected with each other. Eventually, these coherent 

features are integrated by the nervous system of the animal onto a perceptual object, even 

if the features are dispersed among different sensory systems ог subsystems. The binding 

is ubiquitous and occurs whenever а simultaneous remembrance ог representation 15 

important. The most commeon approach in the modeling оЁ binding is to involve time in 

operation (von der Malsburg, Singer, and others). The 14еа 15 10 use the coincidence оЁ 

certain events in the dynamics оё different neural units for binding. This 15 а dynamic 

binding. Usually, dynamic binding is represented by synchronous neurons or neurons that 

are in resonance with ап external field. However, dynamical events like phase ог 

frequency variations usually are not very reproducible and robust. It is reasonable 10 

hypothesize that brain circuits that display sequential switching of neural activity [7] use 

the coincidence ов this switching ю implement dynamic binding of different WLC 

networks. 
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Институте прикладной физики РАН, Нижегородском государственном 
университете, а также B Институте нелинейных Hayk, Сан-Диего, США. 

— Защитил диссертацию на соискание ученой степени кандидата физико- 

математических наук (1967) и доктора физико-математических наук (1973) в 
области теории колебаний и волн. Автор монографий «Введение в теорию 
колебаний и волн», «Oscillations and Waves in Linear and Nonlinear Systems», 
«Nonlinearities м Action: Oscillations, Chaos, Order, Fractals», «Introduction to 
Nonlinear Dynamics for Physicists», более двухсот статей и обзоров B областях 
динамической теории турбулентности в жидкости, хаотической динамики 
раднофизических систем, пространственно-временного хаоса и порядка, 

нелинейных волн в неравновесных средах и др. Член редколлегии журналов «International Journal оЁ 
Bifurcation and Chaos», «International Journal оё Nonlinear Science Today», «International Journal of 
Nonlinear Science», «International Journal оЁ Statistical Physics», «Радиофизика». Член Американского 
физического общества. 
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