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CHAOTIC DYNAMICS OF CHEMICAL REACTIONS 
IN LOW-DIMENSIONAL SUBSTRATES: MEAN-FIELD 

AND MONTE-CARLO APPROACHES 

A. Efimov, A. Shabunin, V. Astakhov, A. Provata 

Complex reactive dynamics оп low-dimensional lattices is studied using mean-field 
model апа Monte-Carlo simulation. We consider four-species cyclic chemical reactions оп 
one- ап two-dimensional catalytic supports. The resulted mean-field model is conservative. 
Depending оп parameters it shows quasi-periodic ог chaotic oscillations. One-dimensional 
lattice does not demonstrate oscillating behavior due 10 the geometric restrictions. Lattice 
Monte-Carlo simulations оп two-dimensional lattices show locally emergence оЁ chaotic 
oscillations which are resulted from complex motions and interactions — оЁ clusters оЁ 
homogeneous species. The properties оЁ the oscillations depends оп the size оё the lattice. 

Introduction 

For the last decades the dynamics of chemical reactive systems on low- 
dimensional supports have been in the focus of attention due to their extensive 
applications in catalytic processes [1-8). For interpretation оЁ the basic mechanisms 
underlying the formation of spatiotemporal patterns observed in such processes different 
models have been proposed [3,5,6]. Methods оё non-linear dynamics offer the possibility 
of analyzing these models and predicting some essential features of their behavior. Basic 
approaches for similar models are the mean-field and the Monte-Carlo simulation 
methods. The first one describes the space оё reactions а$ а whole without considering 
local interactions (if they are present) i.e. description оп macrolevel. The other one takes 
into account processes in the every site of the system and describes local behavior with 
many interesting phenomena such а$ clustering, wave propagations etc. Hereunder it uses 
description on mesolevel. Comparison between these two approach is a subject of the 
present work. We investigate regular and chaotic behavior of cyclic chemical reactions on 
lattices with dimensionality one and two in the mean-field and Monte-Carlo approaches. 
As it was shown т reference [5] similar systems demonstrate different behavior 
depending оп geometry оЁ the lattice. The differences in obtained results can be explained 
by the fact that the geometry and the dimensionality of the lattice strongly influence the 
behavior of the investigated system. In the present work we investigate a system of 
reactions with four interacting components. Mean-field approach leads to conservative 
dynamical system, which reflects the dynamics of average concentrations of substances. 
Depending on the parameters and the initial concentrations this model demonstrate 
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regular (quasi-periodic) ог chaotic behavior. The Monte-carlo simulation оё the processes 
оп the lattice demonstrates complex motion оЁ spatial clusters оЁ homogeneous species. 
Results obtained by these methods have both similarities and some differences. Most оЁ 

the effort in this study is focused in this comparison of the obtained results to a better 
explanation of spatiotemporal behavior of the system. 

Conservative chaos in four-component reactions 

We consider systems оЁ cyclic chemical reactions in the form [7,8] 

Г, ь 5 
X+Y—2Y, Y+ Z—22 Z+U—2U, 

Г ks O} 
+ 5 — 25, S+X —2Х 

where X, Y, Z, U are reactive components and 5 аге emptylattice sites respectively while 
ky, & & & апа & represent the kinetic constants оЁ the corresponding reactions. To get 
mean-field equations we suppose аг the probability of the every reaction т the scheme 
(1) depends on the products of the correspondent components. The standart technique 
leads to five differential equations for the concentrations оё the molecules x, y, z, и апа 

the empty sites s respectively. Using the conservation condition x+y+z+u+s=const with 
const=1 leads to four-variables equations for relative concentrations: 

dxldt = -kxy + kgx(1-x-y-z-u), 

dyldt = kixy - kyyz, 

@@ = kyyz - kyzu, 

аиа = kzu - kyu(1-x-y-z-u). 

@ 

Considered system is conservative: it is seen that it has an integral of motion 

xkakeyhsks hikyhobs(1x-y-u-z) bk = K. 3) 

Its phase space has the following equilibrium points and sets: the trivial point: 
P=(0;0,0,0); semi-trivial equilibrium lines P,=(0;0;2;0), P;=(0;y;0;0), P,=(0;y;0;1-y), 
P=(x:0;1-x;0) (when the space оЁ reactions is poisoned by опе substance) and 
one nontrivial equilibrium point P,=(kk,/A; kiks/A; КК /A;  kkJA) where 
A=k kyrkokvkkovk К,НО „. The region оЁ our interest (from the point оЁ view оЁ 
chemical reactions) is bounded by invariant manifolds: x=0, y=0, z=0, и=0 апа 
x+y+z+u=1 which do not allow phase trajectories to leave the region. The dynamics of 
the system (2) depends оп five parameters: K, К, ks, k, апа k,. However, their number 
can be reduced to four by appropriate renormalization 

xX=-xy + &x(l-x-y-z-u), 

y=xy-oyz 
4 

# = ауг - Вги, 

й = Вги - yu(1l-x-y-u-z), 

where a=k/k,, B=k,/k, йК, 8=kj/k,, t=k,t, x=dx/ @. Dynamics of the system (4) is 
similar to the one оЁ system (é) up to a time scale. Depending on parameters values and 

73



initial conditions е system (4) demonstrates two qualitatively different types оЁ 
behavior: quasi-periodic, when the phase trajectory locks оп а two-dimensional torus 
(cases оЁ many-band tori also take place), and conservative chaos. Fig. 1 represents а 
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Fig. 1. A projection of the phase portrait @), а Poincare section () апа power spectrum (с) of oscillations 
in the system (4) for parameters a=1.5, В=1.0, y=1.0, 6=1.0 апа initial values x;=0.2, y;=0.1, z,=0.11, 
=03 

typical example of quasi-periodic behavior: phase portrait (a), Poincare section (b) and 
power spectrum (c) of the oscillations. In the fig. 2 we see an example of the chaotic 
behavior. Contrary to dissipative systems, attractor-like behavior is impossible in this 
case. Hence, every mentioned oscillatory regime depends not only on the values of the 
parameters but а150 оп the choice оё initial conditions. Therefore, we cannot describe the 
evolution of the system solely based on the parameters because at the same parameters 
values infinite number of quasi-periodic and chaotic limit sets exist. Fixing the values of 

the parameters we can observe regular and chaotic regimes coexisting at different initial 
values. Contrary, fixing initial values we can built regions of existence of typical 
oscillating regimes оп е plane оё the parameters. The last case is represented in fig. 3 
where we built the region of quasi-periodic behavior оп the plane оЁ е parameters о; апа 
В. In the figure, regions of quasi-periodic oscillations are located inside the «tongues» 
marked by «O» and «Ф». It is seen аг the shapes of the regions are similar for two 

different initial values. In both cases chaotic oscillations take place at large and at small 
values оё the parameter а. The regions of regular behavior become more narrow with 
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Fig. 2. A projection of the phase portrait (a), а Poincarc section () апа power spectrum (c) оЁ 
oscillations in the system (4) for parameters a=5.98, В=1.0, y=1.0, 6=1.0 and initial values x;=0.2, 
=01, 24=0.11, =03 

decreasing ов the parameter В, ап аг small В (В<0.1) quasi-periodic oscillations are not 

observed. To be sure аг we deal with conservative chaotic dynamics we have built the 

Lyapunov exponents on the trajectory of the system. Fig. 4 demonstrates dependence of 

ай four exponents оп е parameter а for the same initial values used in fig. 3. Two оЁ the 
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Fig. 3. Boundaries for regions of quasi-periodic 
behavior for the initial values: x)=0.2, y=0.1, 
2,=0.11, ;=03 (О) and x)=04, y)=0.1, z,=0.11, 

(03 оп the plane of paramelers В - @. The 
:&—ш parameters are fixed in the values: y=1, =1 
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Fig. 4. Dependence of the Lyapunov exponents on 
the parameter а ог initial values x,=0.2, y,=0.1, 
25=0.11, 4;=0.3. The other parameters arc fixed in 
the values: p=1, y=1, 8=1 



exponents are always equal 10 zero: опе оЁ them is along е trajectory апа the other is in 
normal direction 10 the surface determined by the integral оё motion (3). The remaining 
two exponents can be both zero for quasi-periodic oscillations ог can have equal absolute 
values and opposite signs for conservative chaotic oscillations, because the sum of all 
exponents must be equal to zero. 

Monte-Carlo Method 

To analyze the dynamic of the system (1) on micro level we use the Monte-Carlo 
simulation оп lattices оЁ spatial dimensions one and two with free boundary conditions. 
The steps оё our Monte-Carlo algorithm were the following: 

1. Select one site at random. 
2. Select опе of its nearest neighbors in random. 
3. Check if these two sites are compatible with апу оё the reaction of the scheme. 
4.1f so, perform the reaction with probability k.. 
5. Return 10 step (1). 

At first, we consider one-dimensional lattice аз the substrate оЁ опг system. The 
parameters of the system are chosen in the values: k=k,=k;=k=ks=1. Temporal 
realization for this system resembles е noise transition. Small deviations оЁ 
concentrations can be observed in the beginning, but the lattice becomes frozen soon. The 
obtained results does not depend qualitatively on the values of the parameters. Changing 
the parameters values we get a similar behavior, but with other time intervals of the 
transition process. This is the direct consequence of parameter significance. The failure of 
equality of parameters does not cause any noticeable or fundamental variations, since the 
system behavior in this case depends оп initial configuration more, than оп the proportion 
of reaction speeds. Different initial values lead to different final steady states. From 
different temporal realizations, we have concluded, that the quantity оЁ steady states for 
this system is infinite. To understand such behavior of four-component system we 
demonstrate figure 5, where а space-time dynamic is illustrated. The initial configuration 

0 50 100 150 site 

Fig. 5. Space-time dynamic оЁ one-dimensional lattice.protect Parameters:k;=k,=k;=k,=k;=1. Lattice 
size 200 sites. Initial concentrations: X, =¥ =Z=U;=20% 

is fully random, but from the first moments the clusters оё homogeneous particles appear 
in the lattice. They change their location, shape and size until any two neighboring 
clusters will contain non-interacting particles. Choosing other initial concentrations, we 
did not observe any noticeable deviations in reactions flowing, though more rapid 
transitions to the steady state are possible. 

Let us consider now two-dimensional lattice. The behavior of the concentrations is 
now qualitatively different compare to the one-dimensional case. Lattices of sufficiently 
large size demonstrate chaotic oscillations of concentrations which do not transit to a 
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Fig. 6. Time evolution conservative chaotic dyna- Е1а 7. Dependence of lifetime оЁ oscillations оп 
mics оп а two-dimensional lattice. Parameters: lattice's size in semi-logarithmic scale. Parameters: 
& ky=k =k =1: Ini{inl concentrations: X,=Y = f& =k ="s=l' Initial concentrations: X, =Y, = 
=2,7U,220%. Latice size 128128 sites 22U, 220 
steady state during reasonable observation times. Typical time-series of concentrations is 
demonstrated in fig. 6. Lattices of smaller sizes demonstrate temporal chaotic behavior 
(similar to the described in the fig. 6) which is finished by transition 10 poisoning оЁ the 
whole lattice by some substance. The life-time оё oscillations depends оп both lattice size 
апа chosen initial conditions. Choosing initial concentrations far from equilibrium state 
leads 10 shorter life-time. The averaged dependence оё the life-time оё oscillations оп the 
size of the lattice is shown in fig. 7 (in semi-logarithmic scale). The amplitude of the 
concentrations of the oscillations depends оп the lattice size. When increasing е lattice 
size the amplitude оё oscillations is reduced. Alternatively, if we observe only а smaller 
part оё the lattice оЁ а particular size we see oscillations оё larger intensity. For example, 
in fig. 8 there are time-series of concentrations of substance X built on 10x10 and 50x50 
sub-lattices of the original 128x128 lattice. At equal values of parameters the point of 
nontrivial equilibrium has coordinates P,(0.2;0.2;0.2;0.2). It means that each substance 
occupies the lattice on 20% and remaining 20% of sites are empty. In dynamical model 
this relates to the steady state of the system. In Monte-Carlo simulations we observe 
oscillations оЁ concentrations оЁ all substances near the value of 20% with some 
amplitudes. These oscillations are stable with respect to choice of the particular initial 
conditions while their averaged values remain the same. The temporal averages of the 
concentrations are equal to the equilibrium values оё е dynamical model. 

The mean-field dynamical model is conservative with an integral of motion 
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Fig. 8. Oscillations оп sub-lattices of е whole Fig. 9. Dependence оё the integral оё motion (3) оп 
lattice оЁ 10x10 sites (solid Нпе) and 50x50 sites ;m; ГЁ‹_ llvlvozgngmiem sexf)of '3"3’("28‘?%'?”?"’1‘83251 
dashed line). The full latice 15 128¢128 sites =Y=Z= U= curve 1) апа X=20%, У=10%, 
¢ ) Z=10%, U=30% (curve 2) оп lattice 500x500. The 

values о the parameters: k, =k,=k=k =1 
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Fig. 10. Space realization ог two-dimensional lattice. Parameters: k;=k,=ky=k,=ks=1. Initial 

concentrations: X,=Y,=Z, =U,=20%. Lattice size 500<500 sites. Snapshot ofz a ?nuic: through 500 

temporal units aftér initial fillifg 
determined by (3). 15 this characteristic preserved with time in Monte Carlo simulations? 

In fig. 9 we show е values оЁ (3) per the value оё the integral in the initial moment оЁ 

time. When initial concentrations are chosen near the equilibrium state the integral 15 

close 10 5 initial value K =K(0) (see the curve 1 in the fig. 9) and its deviation remain 

very small. Choosing initial concentration farther from the equilibrium state we observe 

departure of the integral from its initial value during very short interval to another steady 
value, which is determined by the concentrations. Then, the value оё Ше integral oscillate 
near 45 new value. In this case the deviations become much larger (curve 2 in fig. 9). 
This behavior of the integral of motion 15 ап evidence оё the presence оЁ some transient 
process from the initial random state to more ordered spatial structures. These structures 
are formed from initially uniform distribution оё е substances. Figure 10 represents the 
snapshot of а lattice after 500 temporal units. Different species are shown by different 
shades оё the grey color. It is seen that е whole space оЁ the reactions becomes а set оЁ 
homogeneous ciusters of different shape and size. The clusters move and change their 
sizes with time passing, according to the scheme оё reactions (1). 

Conclusion 

The mean-field model of the four-components cyclic reactive system demonstrates 
both chaotic and quasi-periodic behavior. Because the system is conservative and has no 
attractors its phase space has infinite number of chaotic and torus-like limit sets co- 
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existing at the same parameters values. In real conditions any small noise being present in 
the system (for example due 10 small fluctuations о the system’s parameters) will lead 10 
wandering of the trajectory from one limit set to other and hence to intermittent behavior. 
Using Monte-Carlo simulation оп а two-dimensional substrate ме observe complex 
random-like behavior оЁ the average concentrations, е amplitude оё which depends оп 
the size of the lattice. The lifetime of these oscillations depends on spatial dimension and 
size оЁ the lattice. The one-dimensional lattice demonstrates only short transient 
oscillations 10 one оЁ the steady states. Two-dimensional lattices demonstrates permanent 
chaotic oscillations if the size оё the lattice 15 sufficiently large. The oscillation 15 а result 
оЁ interaction and relative motion of clusters оЁ homogeneous substances which are 
formed during the initial time interval. 
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ХАОТИЧЕСКАЯ ДИНАМИКА ХИМИЧЕСКИХ РЕАКЦИЙ 
НА РЕШЕТКАХ НИЗКОЙ РАЗМЕРНОСТИ: СРАВНЕНИЕ МЕТОДОВ 

СРЕДНЕГО ПОЛЯ И МОНТЕ-КАРЛО 

А. Ефимов, А. Шабунин, В. Астахов, А. Provata 

В работе рассматривается сложная динамика химических реакций, происхо- 
дящих на решетках низкой размерности, состоящих из молекул катализатора. Для 
схемы циклических реакций B приближении среднего поля строится система 
дифференциальных уравнений, описывающая консервативный осциллятор. В 
зависимости от выбора параметров и начальных значений модель среднего поля 
демонстрирует квазипериодические или хаотические колебания. Локальная 
динамика реакций моделируется методом Монте-Карло для решеток размерности 
один и два. Сопоставляются результаты моделирования методами среднего поля и 
Монте-Карло. 
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