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INTERMITTENT TRANSITIONS 
IN THE QUASIPERIODICALLY FORCED MAPS 

Sang-Yoon Kim, Woochang Lim, Alexei Jalnine 

We study the mechanisms оё dynamical transitions accompanied by intermittent 
behavior in е quasiperiodically forced Henon map. In terms оё rational approximations, we 
show that the intermittent transition from smooth attracting invariant curve 10 а strange 
nonchaotic attractor occurs У!а phase-dependent saddle-node bifurcation between the 
invariant curve and а new kind оё invariant «ring-shaped» unstable (saddle) set. We also 
investigate the mechanisms of interior and basin-boundary crises occurring 10 е strange 
nonchaotic and chaotic attractors in the model system. It is shown аг а collision of the 
strange nonchaotic attractor or chaotic attractor with the ring-shaped unstable set may cause 
ап interior ог basin-boundary crisis, depending upon the present structure of the basin оЁ the 
attractor. 

Introduction 

In recent years, dynamical transitions in the quasiperiodically forced systems have 
become the topic of instant interest of the researches. Much attention has been paid to 
investigation of different routes оё transition from regular quasiperiodic motion 10 strange 
nonchaotic attractor (SNA) [1,2] апа observation оё crises оё the SNAs and chaotic 
attractors (CAs). However, until the recent moment, the mechanisms of many dynamical 
transitions still remained unclear. 

An intermittent route from smooth torus to SNA was first reported in the work [3], 
where the quasiperiodically forced logistic map was considered as a representative model. 
The mechanism оЁ this transition was explained in е recent work [4]. In the last paper, 
authors used the methods of rational approximations (RAs) as the tool of investigation. In 
terms of RAs, they observed а new kind of invariant «ring-shaped» unstable sets, which 

are different from smooth unstable tori of the system. It was shown, that the intermittent 

transition from smooth torus to 5МА in the quasiperiodically forced noninvertible 1D 
maps occurs via phase-dependent saddle-node bifurcation (SNB) between the invariant 
curve and the ring-shaped unstable set. Authors also discussed a possible role of the ring- 
shaped unstable sets in the mechanisms of the band-merging, interior and basin-boundary 
crises of strange attractors, which were observed in ref. [5]. 

In present paper we consider the quasiperiodically forced Непоп тар [5], which 
can be regarded аз the model оё Poincare тар of а hypothetical nonlinear oscillator 
driven by external biharmonic signal with irrational rate оё frequencies. We investigate 
the underlying mechanisms of the intermittent transition to 5МА апа interior and basin- 
boundary crises, which occur 10 regular and strange attractors in this system. 
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1. Ring-shaped unstable sets and intermittent route to SNA 

We consider the model system in е form а5 in ref. [5]: 

н =1- ахр + у, +ecos2nf, 

э = DX, (1) 

,,, =6, + о, (modl), 

where 955!. The frequency о is traditionally set to be е reciprocal оё the golden mean 
value: w=(5"2-1)/2. 

The phase diagram оЁ the system (1) is shown т the fig. 1, а. In order 10 
characterize the dynamical regimes in any point of the diagram, we compute the 
nontrivial Lyapunov exponents A, and №е phase sensitivity exponent &; the last one 
measures sensitivity with respect ю the phase of the quasiperiodic forcing and 
characterizes strangeness оЁ the attractor [6]. A smooth attracting invariant curve 18 
characterized by the values 2, ,<0 апа 8=0. The region where it exists 15 denoted by Т. 
The region оё double attracting curve is denoted by 2Т. On the other hand, the chaotic 
attractor has one positive Lyapunov exponent A,>0 (A,<0); its region is shown in black. 
On the border between regions of regular and chaotic dynamics, SNA exists, which has 
negative Lyapunov exponents (A, ,<0) апа positive phase sensitivity exponent (8>0). The 
corresponding regions are denoted in gray and dark gray. In the thin gray region SNA 
appears due to intermittent mechanism, while in the dark gray regions other scenarios of 
transition ю SNA (gradual fractalization ог tori collision) take place. Note, that the 
chaotic region is separated into two parts by «tongue» of quasiperiodic regimes. Such 
structure 15 typical for the phase diagrams оЁ the quasiperiodically forced period-doubling 
systems [4]. The intermittent transition to SNA (denoted by route а in the fig. 1, а) occurs 
along the border of the upper chaotic region. 

At а=0.95 апа е=0.4761 the system (1) has а smooth attracting invariant curve, 
shown in fig. 1, 5. Besides this attracting curve, there is а saddle invariant curve, which 
originally appeared together with the attracting one due to quasiperiodic saddle-node 
bifurcation. The structure оё the phase space is determined by the 2D invariant manifolds 
associated with the saddle curve. In the fig. 1, с we see the section of Ше phase space by 
the plane 60=0.2. The stable manifold W оё the saddle invariant curve determines the 
boundary for the basin (shown in gray) of the attracting curve. 

Let us proceed to the mechanism of the intermittent transition to SNA. As the 
parameter е passes critical value е*=0.476148155, the smooth attracting curve suddenly 
disappears, and SNA arises in some wide area of the phase space (see fig. 1, d for 
£=0.476149). Now, the dynamics consists оЁ laminar phases оё motion in vicinity оё the 
destroyed invariant curve and bursts away from it. Note, that е profile оЁ е newly- 
born intermittent 5МА 15 determined by фе unstable manifold WV of the saddle invariant 

curve. In order to illustrate this, in fig. 1, e муе consider а section оЁ the phase space by the 
plane 6;=0.2, and draw а projection оЁ the segment of 5МА from the interval 
6€(6,-0. ?п 6,+0.01] upon this section. One can see, that the points of attractor (denoted 
by bIack dots in the fig. 1, е) are disposed along the unstable manifold 1/. 

In order to explain the underlying mechanisms of the transition described above, 
we use the method of rational approximations (RAs). For the case of golden mean value 
of o, the RAs can be obtained а$ the ratios оё the Fibonacci numbers: =F,,/F,, Where 

the sequence of {F} is determined ав F,,=F+F,, with F;=0 апа F,=1. Instead of the 
quasiperiodically forced system (1), we consider an infinite sequence of periodically 
forced maps with rational frequencies w,; the properties оЁ the original system can be 
obtained in the quasiperiodic limit at k—c. For the КА of level %, each periodically 
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Fig. 1. a- The phase diagram of the system (1) (here ап thereafier we set the parameter b=0.1). Regular, 

chaotic, SNA, and divergence regimes are shown in light gray, black, gray (or dark gray), and white, 

respectively. To show the existence of intermittent SNA (gray), а small segment пеаг (ag)=[0.95¢£" is 

‘magnified. Solid line denotes the doubling bifurcation of invariant curve. Due to interaction with the ring- 

shaped unstable sets born when passing the dashed line L, different dynamical transition such а$ 

intermittency (route а), interior (routes b and с), and basin-boundary (routes d, e апа f) crises сап occur. 

b - The smooth attractor (black) and saddle invariant curve (gray) aw=0.95 and е=0.4761; с - Ше section 

of the phase space by plane 6,=0.2 а Шс samc values; the basin оё attractor is shown in gray: 

the black dot embedded into unstable manifold W is а section of smooth attractor.d - SNA at a=0.9; 

апа е=0.476149; е - the plane 8,=0.2 аг the same parameter values. Black dots distributed along 

denote projection оё 5МА from the interval 0€[8,-0.01,8,+0.01] оп the plane 
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Fig. 2. The level 7 of RAs (0,=8/13); the value оЁ parameter а is always set to be а=0.95. а - The 
attracting invariant curve ап the newly-born «ring-shaped» unstable set аг e=0.3795. Here and thereafier 
the stable periodic orbits are shown in black, while the unstable ones are shown in gray. b - The typical 
structure of the rlng shaped unstable set after арреагапсе оё а chaotic component а! е=0.383. ¢, а - The 
smooth attracting invariant curve and the ring-shaped unstable set оп е threshold оё phase-dependent 
SNB at е=0.4585; e, / - the destruction of the smooth attractor via phase-dependent SNB (е=0.4588); 
8, h - Ше арреагапсе of intermittent chaotic component оё approximation оЁ the 5МА (=0.4610) 
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forced тар has periodic ог chaotic orbits, which depend upon the initial phase 0. As 6, 
varies within the interval [0, 1/F), the union оЁ such orbits forms full approximations оЁ 
the attractors апа saddles of the system (1). For instance, ап approximation оё а smooth 
attracting invariant curve аг k-th level represents а uniform set оё stable periodic orbits оЁ 
period F,. For the case of SNA, the rational approximation may contain orbits оё different 
periods and even chaotic ones. An existence of bifurcations in the structure of rational 
approximation 15 а characteristic оё strangeness of the attractor. 

In terms of RAs, we observe invariant «ring-shaped» unstable sets [4], which are 
different from smooth unstable invariant curves of the system (1). When passing the 
dashed curve L in fig. 1, a, the ring-shaped unstable set of periodic orbits appears due to 
phase-dependent saddle-node bifurcation (SNB). At the level оё approximation k=7 such 
set 15 composed оЁ F,=13 small rings (see fig. 2, а). These rings are formed by stable 
(black) апа saddle (gray) F,-periodic orbits. Originally, the rates оЁ stable апа unstable 
periodic orbits № е ring-shaped set are equal. However, ав the parameter е slightly 
increases, the chaotic attractor appears via period-doubling of stable periodic orbits, and 
then it disappears due to collision with the saddle F,-periodic orbit, see fig. 2, b. In the 
last figure one can see that the rate of stable periodic orbits in the ring-shaped set has 
contracted, and the unstable (saddle) orbits have become dominant. Therefore we refer 

such set to as the ring-shaped unstable set of orbits. At sufficiently large values of ¢, the 
shape оё the rings changes and becomes more complicated (see fig. 2, с; more details оп 
the ring-shaped unstable sets are given in ref. [4]). 

As ме approach е border оё intermittent transition оп the diagram, the ring- 
shaped unstable set come closer 10 е attracting invariant curve (fig. 2,с). Then, аг some 
critical value e=g, [e,)= 0.458706], the phase-dependent SNB between invariant 
curve and the saddle component of the ring-shaped unstable set occurs, as it is shown in 
fig. 2, 4. This bifurcation destroys е invariant curve. From this moment, the attractor оЁ 

the system becomes nonsmooth, since its approximation contains bifurcations and chaotic 
regimes. As the parameter е increases further, the chaotic attractor, which was originally 
associated with the ring-shaped unstable set, undergoes interior widening at next critical 
value e=¢,P[e,?=0.459639], and the intermittent chaotic component of the 
approximation appears, ав it 15 shown in fig. 2, e. Thus, in terms оЁ RAs the intermittent 
transition to SNA consists оЁ two stages: the phase-dependent SNB and widening оё the 
chaotic component of approximation of the SNA. However, in the quasiperiodic limit (at 
k—»w) the distance Ae,[=e,V-¢,?] between two transition points tends 10 zero а5 e, I~F %, 
where a=0.8, апа the both values ¢,?) converge 10 " 

2. The new mechanisms of basin-boundary and interior crises 

Collision of е attractor with unstable orbit lying оп the basin boundary causes 
crisis, which destroys the attractor [5]. On the other hand, collision with unstable orbit 
inside the basin gives rise 10 abrupt widening оё е attractor known а5 «interior» crisis. 
Previously, the mechanisms оё basin-boundary and interior crises due to interaction with 
periodic and quasiperiodic orbits [5] were known. We found new mechanisms of crises of 
SNAs апа CAs in the quasiperiodically forced maps due 10 collision with the ring-shaped 
unstable set. The dynamical transitions а-с near the «tongue» оЁ quasiperiodic regimes 
(fig. 1, а) are associated with interior crises оЁ е attractors: when а smooth attractor, 
SNA or CA collides with the ring-shaped unstable set lying inside the basin, then 
intermittency ог widening crisis occurs. On the other hand, routes @, e, and f м the 
«tongue» correspond to the basin-boundary crises of а smooth attractor, SNA and СА, 

respectively. 
For illustration, we consider the mechanism оё basin-boundary crisis corresponding 

59



o™ ™ 
Saddle invariant curve- 

e 00 6 ло f oo В 0.13 

Fig. 3.a - The 5МА оп the threshold оё crisis (route e) аг paramter values a=1.0925,e=0.41; b - section оЁ 
the phase space by plane 8;=0.41 аг the same parameter values; black dots distributed alongWV denote 
projection of SNA from interval 0[0,-0.01.8,+0.01] оп the section. The rational approximation of level 
k=T Юг с - the 5МА апа the ring-shaped unstable set оп the threshold оЁ crisis ata=1.067, e=0.41, апа е - 
е «remnant» of 5МА after crisis at а=1.069, e=0.41. The figures & and f represent the enlarged 
fragments of ¢ and e, respectively 

to route e. The 5МА (fig. 3, а) is disposed along the unstable manifold WY, while е 
stable manifold W* determines з basin (fig. 3, 5). Due to homoclinic intersection оЁ WS 
апа WY, the SNA has fractal-like basin boundary. In terms оё RAs, the crisis occurs due 
10 collision of the chaotic component оЁ approximation оЁ SNA with the ring-shaped 
unstable set (see fig. 3, c-f). After such collision, the «gap» in approximation opens, 
where the trajectories exhibit divergence. 

3. Conclusion 

We studied dynamical transitions associated with intermittent behavior in the 
quasiperiodically forced Henon map, using the method оё rational approximations. It was 

60



shown, that intermittent transition to SNA, as well as the interior and basin-boundary 

crises оё strange attractors, typically occur due to collision оё е attractor with а new 

kind оё invariant «ring-shaped» unstable sets. These sets, which in the quasiperiodic limit 
apparently correspond 10 а fractal set оЁ chaotic saddles, play а central role in dynamical 
transitions in the quasiperiodically forced systems. 
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О ПЕРЕХОДАХ YEPE3 ПЕРЕМЕЖАЕМОСТЬ 
В КВАЗИПЕРИОДИЧЕСКИ ВОЗБУЖДАЕМЫХ ОТОБРАЖЕНИЯХ 

Sang-Yoon Kim, Woochang Lim, Алексей Жалнин 

Исследуются механизмы динамических переходов, сопровождающихся 
перемежающимся поведением, в квазипериодически возбуждаемом отображении 

Эно. На основе метода рациональной аппроксимации показано, что переход от 
гладкой притягивающей инвариантной кривой к странному нехаотическому 
аттрактору через перемежаемость происходит благодаря фазозависимой седло- 
узловой бифуркации между инвариантной кривой и неустойчивым (седловым) 
инвариантным множеством, именуемым в соответствии со своей топологией 
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«кольцеобразным множеством неустойчивых орбит». Исследованы бифуркацион- 
ные механизмы кризисов столкновения с границей бассейна и внутренних кризисов 
для странных нехаотических и хаотических аттракторов модельной системы. 
Показано, что столкновение аттрактора с  кольцеобразным — множеством 
неустойчивых орбит может вызвать внутренний кризис или разрушение 
аттрактора в зависимости от устройства его бассейна притяжения. 
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