TR =
IV CTYJSHTOB H ITPeTOfiABaTe et [ i)
Hss. By3os «I[TH», T.11, Ne 2, 2003 YIOK 517.39

WAVES AND THEIR INTERACTIONS
IN THE LATTICE LOTKA-VOLTERRA MODEL

G.A. Tsekouras, A. Provata, F. Baras, A. Shabunin,
V. Astakhov, V. Anishchenko, D. Frantzeskakis, F. Diakonos

In this work, we study the Lattice Lotka-Volterra model and specifically the
properties of the waves that arise from inhomogeneous initial conditions. We consider
different types of waves (stripe-like, radial, spirals) and we study their collision rules.

Introduction

The reactive dynamics of systems restricted to low dimensional supports are
known to produce very rich and complex spatiotemporal behavior [1-8]. In particular,
reactions that take place on a catalytic surface are a special category of reactive systems,
that due to their low diffusivity and special spatial features, tend to produce interesting
dynamical behavior. Examples of this kind of reactions are the CO oxidation on Pt
surface [9-11], the NO reduction on Pt surface [11-14] and the NO+CO reaction on Pt
[15,16].

To understand and describe the complex behavior of such reactions as well as
analyze the underlying dynamical mechanisms, it is common to employ simplified
reactive models, such as the Lattice Lotka-Volterra (LLV) model [2,8]. The LLV-model
is a cyclic bimolecular model which involves three species X,, X, and S. It has been
studied in the literature as an alternative model to the usual Lotka-Volterra [17,18] since
it also presents conservative Mean-Field (MF) dynamics (see e.g. [19,20]). The LLV-
model is described by the following reaction scheme:
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X, ¥X,~2X;, (1a)
tl

X, + 825, (1b)
‘.2

S+X, ~2X,. (1c)

In these reactions X, and X, correspond to two adsorbed chemical species while §
denotes the empty sites of the catalyst. In that sense, we have an open reactive system,
where reaction (1a) is an autocatalytic reactive step, (1b) denotes cooperative desorption
while (1c) cooperative adsorption. The key ingredient of chemical nonlinearity is the
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autocatalytic nature of the above reaction scheme. The homogeneous MF equations
corresponding to the above scheme are:

dx,/dt = k,x,s - kx, x,, (2a)
dx/dt = kx,x, - k x,s, (2b)
dsldt = k,x,s - k,x,s. (2c)

Here x, is the concentration of particles X , x, is the concentration of X, while s is
the concentration of empty sites. From conservation of the total number of lattice sites we
have thus:

x+x+s=1 (3)
To reduce the number of parameters we perform the following rescaling [8]:

a, =k /(k+k,+k ), (4a)

a, = k,/(k,+k,+k ), (4b)

T =1 (k+k,+k). (4c)

Using Eqgs (4) and (3), egs (2) are transformed into a reduced and dimensionless
form, namely:
dx/dv = ax[1-x,-x,(1-a,)/a,)], (5a)

dv,/dt = -ax,[1-x,(1-a,)/a-x,). (5b)
Egs (5) have four fixed points. Three of them, (0,0), (1,0), (0,1) are saddles and
one of them (a,,a,) is a center surrounded by an infinity of closed periodic orbits [8,9].

The phase-space portrait can be seen in Fig. 1. We also give a characteristic MF temporal
evolution in Fig. 2.
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Fig. 1. Phase-space fora,=0.333, a,=0.333 Fig. 2. Time evolution fora,=0.53, a,=0.29

Monte-Carlo simulations

It is generally accepted [1] that homogeneous MF equations are quite inadequate
for describing the dynamics of spatially constrained systems. As also addressed in
references [1-8] the MF approach cannot take into account the complex phenomena
arising from local interactions. The restriction of the dynamics on a low dimensional
support has been studied earlier [2,8,20,21] and it was shown that local fluctuations are
responsible for driving the system away from MF behavior. To study this we follow
references [2,8] and restrict the LLV process on a 2d square lattice support. Each site of
the support contains either an X, or X, particle or it is empty (S). For the reactive steps
we consider only nearest neighbor interactions and for the dynamics we use the following
Monte-Carlo scheme.



1. At every elementary time step select one site at random.

2. Then, select one of its nearest neighbors at random.

3. Check if these two sites are compatible with any of the reaction of the LLV
scheme. If the chosen site is X; and the neighbor X, then the selected site becomes X,
with probability k. If the chosen site is X, and the neighbor S then the selected site
becomes § with probability ,. Finally, if the chosen site is § and the neighbor X, then the
selected site becomes X, with probability &,.

4. In all other case the lattice remains unchanged.

5. Increase the elementary time by one unit and return to step (1).

One Monte-Carlo step is completed when each lattice site is visited once on
average (that is after L? elementary steps, where L is the linear lattice size). If the system
is initialized from homogeneously random initial conditions then it organizes sponta-
neously into small local oscillators that are oscillating incoherently. As a results, if we
calculate the species concentrations in large spatial scales they seem to attain a constant
value but in smaller scales the system appears to oscillate coherently [2,8]. Furthermore,
it has been shown that these local oscillators have fractal structure and the fractal analysis
can also reveal their characteristic length [8]. In Fig. 3 snapshots of the evolution of the
system are given when initialized from homogeneous initial conditions.

=0 t =10 mcs

T "’ £

=0.333 and a,=0.333 (k,=k,=k =1). X, particles are depicted by
gray, X, by white and empty sites are black. The lattice size is L=2
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Waves in the LLV-model

In a recent work [21], some wave solutions have been reported to exist for the
LLV-model and furthermore the roughening process of the traveling fronts was
extensively studied. In this paper we give a full report of already known and new types of
traveling solutions and we also study their collision properties. We work for the case
al=az=0.333 since in that domain all the wave fronts demonstrate their most stable
behavior. The possible traveling solutions for LLV can be categorized as following.

1. X,-X, linear fronts [21]. In this case the fronts propagate through the empty
lattice on constam velocity and the fronts roughen with time. This fronts are unstable and
they tend to collapse after some time proportional to their initial width.

2. Random linear front [21]. In this case we have the spontaneous creation of X, -
X,-S zebra like formations and the self-organized front is moving with constant velocity
inside the medium.

3. Random disc [21]. Starting from an initial random disc we have the spontaneous
creation of zebra like waves as above that propagate outwards.

4. Spiral wave [21]. If we start in a circular lattice by setting three domains of 12(°
of X,, X, and S respectively then a fractal spiral wave is created.

5 Incoming radial waves with X,-X, initial configuration. If we start from two
consecutive rings of X, and X, then we create incoming radial waves that after a while
collapse into the center (Flg 4)

t=0 t = 20 mcs

t = 40 mcs t = 60 mcs

Fig. 4. Incoming radial wave in an L=512 lattice

6. Outgoing radial waves with X,-X, initial configuration. If we transpose the
previous configuration then we have outgoing radial waves. These waves are also
unstat;!c and collapse after time proportional to the original radial width of the rings (see
Fig. 5).

7. Double spiral. Using again a circular lattice and dividing it into 6 areas of X |, X,
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t=0 t =20 mcs

t=40 mcs : t = 60 mcs

Fig. 5. Outgoing radial wave

and S as in Fig. 6 we may create another spiral wave with more complicated structure
than the original one (see Fig. 6). The same is true for spirals of order 3 .

t=0 t = 20 mcs

t =40 mcs

Fig. 6. Double spiral wave
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t=0 t=35mcs

t= 70 mcs t=105mcs

Fig. 7. Incoming-Outgoing collision (L=1024)

We have also studied the collision rules of these types of waves. Our main
conclusions are:

 When a X,-X, stripe moving to the left collides with a X, -X stripe moving to the
right they both annihilate.

* The same happens when we have a collision of an incoming radial wave with an
outgoing radial wave (Fig. 7).

* When two outgoing X,-X, radial waves collide they merge into a big outgoing
wave (Fig. 8).

* When two outgoing random radial waves collide they create a new random
outgoing wave.

As noted earlier we have worked for the special case of a,=a,=0.333. If we use
different @, and a, then we can still get propagation as seen in Figs 4 and 5. However, the
size of the front is going to change over time. If for instance we take a,>a, the X, radial
region is going to get wider with time. In the special case @,=a,=0.333 these radial stripes
propagate but they retain their mean width steady for relatively long times (before
random fluctuations break them).

Conclusions

We have studied the Lattice Lotka-Volterra as a toy model describing basic
properties of nonlinear chemical reactive systems confined to low-dimensionality and
low-diffusivity systems. Specifically, we have searched for traveling wave-like solutions.
We have found a plethora of such solutions, some of which, (like the random zebra
formations or the spirals) are intrinsic and stable solutions of the system appearing
spontaneously and being quite stable while others, such as the outgoing and incoming
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t = 30mcs

t=60mcs t= 90 mcs

Fig. 8. Outgoing-Outgoing collision (L=1024)

X, -X , solutions are unstable and tend to collapse to more stable solutions. We have also
studied the collision rules of such solutions.

It is quite evident from the above discussion that even systems with simple
dynamics, such as the LLV, can produce a large variety of dynamical spatiotemporal
patterns and are thus good, simple candidate models for analytical and numerical
experimentation and for understanding the underlying principles of such complexity
before engaging into the analysis of more complicated real-world systems.
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Capamos, Agpunsi, Bprocceaw, Huicon ITocmynuaa e pedaxyuio 28.02.03

BOJIHBI M UX B3AUMOJIEVICTBUE B MOJEJIM PEMIETKH,
OITUCHIBAEMOW YPABHEHUSIMH JIOTKH - BOJILTEPPBI

G.A. Tsekouras, A. Provata, F. Baras, A. lllabyrun, B. Acmaxos,
B. Anuwenko, D. Frantzeskakis, F. Diakonos

B paGore u3y4aeTcs AMHAMMKA JBYMEPHOW peLIeTKH, KOTOpasi B MPHOIMKEHUH
CpefiHero mnons onuchiBaeTcs ypaBHeHHaMH JloTku - BonbTeppbl. PaccmarpuBaerca
MPOLECC PaclNpOCTPaHEHHs] BOJIHOBBIX (DPOHTOB, TOSBIAIOIWIMXCS TMpPH  3afaHUH
CrieldalbHbIX Ha4yalbHBIX YCNOBHH. B 3aBucuMOCTH oT BbIGOpa KOHGHIYypauHu
Ha4YaJlbHOrO COCTOSIHHS CHCTEeMa [E€MOHCTPHPYET paclpOoCTpaHeHHE BOJH pasiMyHOro
THNA: NJIOCKKUX, PaHaibHbIX H CMIHPabHbIX.
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Illabynun Anexceil Baadumupoeus - pomunca B Capatose (1966).
. Oxonunn cusmyeckmit akynsrer CapaTOBCKOrO TOCYJapCTBEHHOTO YHHBEp-
. cuTeTa Mo crneupanbHocTH pagnodmsuka (1990). BammTHn mHCcepTalMIO Ha
COMCKaHHE Y4eHOIl cTeneHH KaHuaaTa ¢pusuKo-MaTemaTHuecknx Hayk (1998) mo
CHHXPOHH3AIHM M YNPAaBJIEHAIO Xa0COM B CBA3AHHBIX KOJEGATENBHBIX CHCTEMAX.
- Houent kacenpel pamuocbusuku u HemuHelHol muHammku - CI'Y. OGnacts
. HayYHBIX HHTEDECOB - Teopus KoneGaHuil u uHamMudecKuil xaoc. Astop Gonee 30
omy6aHKOBaHHbIX paGoT.

; Anuwgenico Badum Cemenosuw - pogwicad B 1943 rony. Oxonuun cusn-
. yeckuit pakynbTeT CapaTosckoro ynusepcareta (1966), samurun gucceprauuio
~ Ha 3BaHHe KaHuaTa (usHko-MaremaTHyueckux Hayk (1970) u mokropa dusuko-
- maremaTmuecknx Hayk (1986). C 1988 ropa - 3aBemyroumit Kacenpoit
papHodu3ukn u Henuueiinol guHamuxku CIY. C 1979 u mo HacTosmee Bpems
paboTaetT B 06NAcTH HCCHENOBAHHS HENMHEHHON [UHAMHMKM H CTOXaCTHYECKHX
NpolieccoB B HelMHEHHBIX cHcTeMax. SBnderca aBropom Gonee 300 HayuHbIX
. pa6or, cpeii KOTOphIX 7 MOHOrpachHit Ha pPYCCKOM H aHIJIMIICKOM A3bIKax H 4
~ yueGHuKa. HeoHOKpaTHO 4MTaN NEKUMH B BelyluuX By3ax [epmanuu B KavuecTse
. mpurnamesHoro npodeccopa. Unen-koppecnonfiear PAEH, 3achyXeHHbIi
mesens Haykun P® (1995), maypear mpemim ®omma Anekcamupa I'ymGomsmra
- (1999). E-mail: wadim@chaos.ssu.runnet.ru

Acmaxoé Baadumup Baadumuposuw - okonuwn CapaToBCKHil rocypap-
creennsi yamsepcutet (1980). 3anmmun xaHmupaTckyio guccepramuo (1983) u
- poktopckyio  (1999). Ilpodeccop Kadempbl paiHOH3MKH H HeMHHEHHOM
munamuku CI'Y.

OGnacTh HayuHbLIX HHTEPECOB - TeOpHA. KoeGaHuil W AMHAMH4YeCcKHil Xaoc,
CMHXpOHM3alUMsi M YynpaBieHHe xaocom. Hmeer Gomee 60 nyGamkammit B
OTE4ECTBEHHBIX W 3apyOeXHBIX H3JaHHAX.
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