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DYNAMICS ОЕ GLOBALLY COUPLED NOISY FITZHUGH-NAGUMO 
NEURON ELEMENTS 

J.A. Acebrén, A.R. Bulsara, апа W.-J. Rappel 

We study the noisy FitzHugh-Nagumo model in the presence оё ап external sinusoidal 
driving force. We derive a Fokker-Planck equation for both the single element and for the 
globally coupled system. We introduce ап efficient way to numerically solve this Fokker- 
Planck equation and show that the external driving force leads to a classical resonance when 
its frequency matches the underlying systems frequency. This resonance 15 also investigated 
analytically by exploiting the different timescales in the problem. Agreement between the 
analytical results and numerical results 15 excellent and reveals the existence оё а stochastic 

bifurcation. 

To Vadim Anishchenko, on the occasion of his sixtieth birthday 

1. Introduction 

The FitzHugh-Nagumo model (FHN) is а simplified version оё фе celebrated 
Hodgkin-Huxley model [1], which describes the firing mechanism in a excitable nerve 
cell. In the FHN, the dynamics of the nerve cell has been reduced to two variables: a fast, 
activation, variable and а slow, recovery, variable [2]. Due 10 its relative simplicity, the 

FHN and its extensions has been studied extensively. Both single neurons and 
populations of diffusively coupled neurons have been investigated. In addition, the 
periodically driven FHN, where either the slow or the fast equation contains a time- 
periodic driving term, has received considerable attention [3-7]. Moreover, as the FHN 
displays a rich phase diagram that includes excitable, oscillatory and bistable regimes, it 
has become а «workhorse» in the field оё pattern formation (see e.g. [8,9]). 

In this paper, we investigate the FHN in the presence of noise and a probe signal. 
In addition to studying the single element, we examine the effect of coupling the FHN 
elements in a global fashion. Particular attention is paid to the classical resonance effect 
Ehat can arise when a system with an underlying frequency is driven by a probe signal 
4,10]. 

2. Model equations 

Let us start with the most general form of the FHN model: 
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dxldt = Ax® + Вх? + Сх + Hy +1 +E, 

dyldt=Ex+Fy + С, 

where &’s are Gaussian white noises, with (&())=0, (E()&(#))=2D5(s-1') and where A 
through G аге parameters that determine the dynamics оё the system. To make @е 
treatment in this paper as general as possible all relevant expressions will be derived 
using the above set of equations. However, when presenting the results of numerical 
calculations, we have chosen to limit ourselves here to the investigation of the FHN in its 

more conventional notation: 

M 

odx/dt = x(x-a)(1-x) - y + Е, 

@) 
dyldt=x-py - Ь, 

where а 15 typically taken to be small. 
In order 10 study е properties оЁ the stochastic differential equation in (1), we 

start by deriving the Fokker-Planck equation (FPE) for the density probability, which is 
given by: 

др/дг = Од?р/дх? - 9/0x[(Ax® +Вх?+Сх+Ну +I)p] - 
©) 

- д/ду[(Ех+Еу+С)р], 

which has to be accompanied by initial and boundary data (decay to zero ав х->+с0, 
y—>t, with sufficiently high rate), and the normalization condition 

ol 2 dxdyp(,y.0) = 1. @ 
In the following, we are interested @ finding solutions оё фе FPE Юг large time. This 

search is greatly facilitated by the fact that the FPE has a unique stationary solution. This 

can be seen by noting that there exists a Lyapunov function (see [11] and references 
therein). It then follows that such a stationary solution is unique and globally stable. For 
parameters values ог which analytical progress 15 difficult to achieve one has 10 resort 10 
numerics. Direct simulation оё the Langevin equations (1), аз has been commonly done 
in the FHN repertoire, can be computationally intensive. For reasonably accurate results 

опе typically has 10 average over many realizations. This is particularly the case for 

systems close to а bifurcation point where опе has 10 distinguish between different stable 

solutions and for systems where е noise 15 large. Numerical solutions of the FPE, оп the 

other hand, can be obtained much faster. Rather then using a finite difference scheme we 

have used an efficient spectral method for which we expand the density probability p 
using a basis of Hermite polynomials 

РСсэи) = Z, o P(OH,(OH, (1)e=e”. ) 

Note that this expansion satisfies the boundary conditions, and the normalization 

condition with r"=1/x. 
Let us insert Eq. (5) into the FPE (3). We then obtain the following hierarchy of 

coupled ordinary differential equations for r,"(r). 

# = 3 Ап? + Сп + Fmlr," + [B(n - )+г + 

+ [р + ЗДА(п - 1) + М, Clr, + (BI4)r, " + (A8)r, " +Bn(m+1)r, "+ 

+ Ап(п+1)(пн2)уа" + т + (FIR)r,24 Up(H+E)r, и + E(n1)r, ", (6) 

п = 0,1...9, т = 0,1...,09, 
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where (x), and (y) are given by 

(=T dudyp () = л, 

©) =/ 217 drdyyp(xy.1) = о. 
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Fig. 1. Comparison between the numerical solution 
of the Langevin equations (dashed line; averaged 
over m=500 realizations) and the solution оё the 
Fokker-Planck equation (solid line) by the spectral 
method with М=М=7 coefficients. Parameters are 
D=0.01,5=0.5, р=1, а=0.05 

™ 

®) 
The numerical method consists — оЁ 
truncating the infinite hierarchy of first- 
order, coupled nonlinear differential 

equations, for a reasonable number of 
modes n=0,...,N, and m=0,...,M, setting 

7y *=0. We have compared — е 
numerical solution obtained via the Fokker- 
Planck approach, to the solution of the 

Langevin equations, obtained by averaging 
over a large number of realizations. In Fig. 
1, we plot the first moment (x) а5 а function 
of time, obtained numerically by solving 
the Langevin equations (1) and by solving 
the FPE using the above-described spectral 
method. The spectral method (with 
N=M=7 moments) is seen to provide 
excellent agreement with ‘the more 
conventional and time-consuming 
technique based on numerically integrating 

the coupled stochastic differential equations (1). 
Following this preamble, we start with an extension of the model equations (1) to 

describe а system о globally linearly coupled FitzHugh-Nagumo elements. Global 
coupling is also most amenable (of all the possible coupling schemes) to theoretical 
treatment. We will couple the elements in е following global fashion: 

@ка = Ах? + Вх? + Cx, +Hy, + [+ KIN З () + 5 ©) 

dy,/di = Еху+ Fy, + С, „М. (10) 
With this type оЁ coupling, the FPE for the perfectly synchronized system 15 identical 10 
the FPE of a single element. 

We are interested in the analytical investigation of the Langevin dynamics above, 
for the case of very large М. A neat picture оЁ such а case can be given by the limiting- 
model obtained when №->со (thermodynamic limit). In this limit, it is well known [12,13] 
that models with mean-field coupling are described by an evolution equation for the one- 
particle probability density. This can be seen by noting that the hierarchy of equations for 
all the multiparticle probability densities can be closed by assuming molecular chaos. In 
such а way, е one-system probability density p(x,y.z) is asymptotically in the limit, 
N—>oo, the solution оё the following nonlinear Fokker-Planck equation: 

i=1,. 

др/дг = Од’р/дх? - 9/0x[(Ax® +Bx*+Cx+Hy+K(X - x) + I)p] - д/ду[(Ех+Ру+С)р], (11) 

where 

х=/ ] гааухр (x.y.0). (12) 
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The hierarchy (6) now becomes: 

7= () An? + Сл + Ет - Km)r," + [B(n - М ) + 1 +nKrJr, " + 

+ [0 +3/ А(п - 1) + 1 С - KI2Jr, + (BI4)r, ;" + (AB)r, " + Bn(m+ 1)r " + 
(13) 

+ Ап(п+1)(пн2)у а” + Ок + (FI2)r 2 + Yy (HE)r, ™ + Е1 )га 

n=0,..,» m=0,..,». 

<х> 

Note that now the hierarchy consists оЁ а 
system оЁ coupled first-order nonlinear — (,5 
differential equations. : ` 

In Fig. 2, ме have compared the 

numerical solution obtained уа the 0.0 
nonlinear Fokker-Planck approach to the 
solution of the Langevin equations for a 
large number of FHN oscillators 0.5 
(N=5000). The solution of the FPE, 
corresponding ю N—w, provides excellent — _1.0 
agreement with the finite М case апа shows 0 5 10 15 Й 

that N=5,000 is already close to infinity Юг Fig. 2. Comparison between solution obtained by 
ай practical purposes. means of FPE (solid line), and direct numerical 

simulation оё the Langevin equations (dashed line) 
for N=5000 oscillators. Parameters are а5 in Fig. 1, 

ао К=1 

3. Bifurcation analysis 

To investigate the bifurcations in the noisy case it is worthwhile to determine the 

underlying frequency of the system. One way of determining this frequency is to compute 
(%) from the Langevin equations апа evaluate its time dependence. Unfortunately, this is 

computationally very costly. On the other hand, {x) calculated from е FPE, which offers 

a computationally superior way to characterize the system, does not display a time- 

dependent behavior for a single FHN oscillator. Therefore, an alternative way of finding 

the frequency needs to be employed. Fortunately, as we will see below, including an 

external time-sinusoidal «probe» signal leads 10 а classical resonance which can be used to 

determine the underlying frequency [4]. We will consider ап external signal (аг has а time- 
sinusoidal component G=Gtgsin(w ) in (1) (or, equivalently, b=b0+qsin(wyt) т (2)). 

To illustrate the effect of the probe signal, we first performed Langevin simulations 

апа calculated (y). In Fig. 3 we have plotted the power spectrum of this quantity, for three 

different probe signals; two оё them with frequencies о, that differs significantly from 

and one that is very close to the underlying frequency. The power spectrum was obtained 

by averaging 100 timeseries оё 223 timesteps each. The figure illustrates clearly that for а 

probe signal frequency !аг matches е broad peak (corresponding 10 the, in general, 

non-sinusoidal running oscillations) in the power spectrum оё the unprobed system, е 

signal is amplified. Thus, adding а probe signal gives us а tool ю investigate the 

dynamics оё the noisy system. On the other hand, it 15 worthwhile to exploit such а result 

to study the bifurcations 1 our noisy system. In Fig. 3, а, апа b, we show the results for 

two different values of the noise strength. For small noise strength (Fig. 3, a), the peak in 

the powerspectrum reaches a maximum for non-zero values of the probing frequency 

while for larger noise strengths (Fig. 3, b) this peak is reached Юг w =0. Thus, there isa 
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Fig. 3. Power spectrum of the variabley for three different values оё the probe signal, and noise strength; 
(а) @ =2.0,3.5,7.0,0=0.003, апа (b) @, =0.5, 2.0, 3.5,D=0.005. Simulations done by using the Langevin 
equations. Other parameters are b,=0.5, p—l 4=0.01, and с:=0.05 

qualitative change in the powerspectrum and т the dynamics of the system, which can be 
interpreted as the signature of a bifurcation. 

Analytical progress by means of the Fokker-Planck equation can be made if we 
consider а small amplitude signal, g=eQ, where e<<1. The resulting FPE can then be 
analyzed via the method of multiple scales. Thus, Eq. (3) contains terms with two 
different time scales. It is then to be expected that an appropriate asymptotic method will 
be able to capture the long-time behavior of p. This may be achieved by introducing fast 
and slow timescales as follows: 

T=tl, t=t (14) 

We look for a distribution function satisfying the boundary condition according to the 
Ansatz: 

plxy.ie) = 2„:„ p(xy.1 e+ О(е°). (15) 

From (15), №е average of х is given by 

()= O+ е( + O(e2), (16) 
where 

@V =] _: 1В : dxdyx pD(x,y,t). (17) 

The average оЁ у 15 given by similar equations. Inserting (15) into (3), we obtain the 
following hierarchy оё equations for p@: 

/e =0, (18) 

др®)/дк = DR/ - OA[(AX® +Вх?+Сх+Ну+1)р®) - 

- AR (Ex+Fy+G,)p®] - друду, 

др®!дс = DPpI - NAX[(AX® +Вх2+Сх+Ну+Г)р)] - 

(19) 

(20) 
- 0/0y[(Ex+Fy+Gy)p®] - др®)/д: - Qsin(wpr)ap“”lay, 
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where the normalization conditions 

Л oy )y = 5, (21) 
follows from (4). Eq. (18) implies that р® is independent оё . Then, the terms in the 
right side оё (19) which do not have t-dependent coefficients give rise 10 secular terms 
(unbounded оп the t-time scale). The condition аг no secular terms should appear is 

D% V/0x? - 9/0x[(Ax® +Вх?+Сх+Ну+Г)р®)] - - 

- 0By[(Ex+ Fy+G,)p®)] - 3p0/31 = . 
This equation should be solved for р® together with the normalization condition and 
initial condition data. Note that this problem is equivalent to solving the FPE (3) without 
the probe signal as the effects of the probe signal appear first when calculating the first- 
order correction, p®), 

To calculate these first-order corrections, we again impose the condition that no 
secular terms appear ап that е right-hand side of (20) vanishes. The resulting equation is: 

рд’р“)дх? - 3/0x[(Ax® +Вх?+Сх+Ну+Г)р')] - 
(23) 

- д/д)[(Ех+Еу+С)р®?] - др)/д; - Qsin(mpt)ap(")/ay =0. 

The analysis of the equation above can be readily accomplished in Fourier space. Fourier 
transforming Ед. (23), we obtain 

iwp® = DI*pM/x? - д/дх[(Ах3 +Bx2 +Cx+Hy+I)pW] - 
@4 

. - 31By[(Ex+ Fy +Go)p®] -i(Q12)3/3y [0 (w+w,) - pO(w-w,)], 

pO(xy0) = [ die pO(x,y.0), (25) 

(0 = [ [ Zdedy хр® (xy.0), (26) 

j=01 (27) 

The equation (24) should be solved for рО) together with / = “dxdyp®=0. Since р® 

evolves 10 а stationary solution for long-time (i.e. p@=8(w)A(8,,,)), we find фаг =0 
15 the only solution оё (24), unless w=tw,. Then, (24),(27) imply that 

РО =n*(xy)8(0-w,) + 1 (1y)8(wtw,). (28) 

Inserting (28) in Eq. (24), we obtain two uncoupled equations forn*, and . These 
сап be solved, by expanding n* in Hermite polynomials, 

n¥(xy) =2, %, (T),"H,()H, ()e e, (29) 

апа solving the corresponding nonlinear systems оё equations for the coefficients (T*),". 

Опсе we obtain (T*) ™, we can calculate ($)® from Е. (27). Notice that p(+w_)=p"(-0 ), 
by taking the compléx conjugate in (24), апа (27). Then it follows from (285, апа (29) 
that (T¥),"=((T"), ™). Therefore муе conclude that (3')(')(-шр)=((х)…)'(+шр), and the 
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Fig. 4. Comparison between the theoretical results — В. 5. {x) versus е frequency of е probe signal 

and the numerical simulations, marked by symbols. — Юг different values оЁ the noise strength: D=0.002 

Parameters are D=0.05, b;=0.3, p=1, ¢=0.01, апа (solid line); 0.003 (dot line); 0.005 (dashed). Results 

a=0.05 obtained by means of the theory for 2 single FHN. 
Parameters are by=0.5, p=1, 9=0.01, апа a=0.05 

inverse Fourier transform yields 

WD) = Эке( cos(o) - Am(HOasinw).  (30) 
Knowing (x))(¢), its amplitude can be readily computed, and е result is 

4. =AAOED)YT? + 0. @ 
In Fig. 4, we plotted the numerical solution and the theoretical approximation (31), 

showing а remarkable agreement with фе theoretical results corresponding to the first- 

order expansion. It should be noticed, however, that е amplitude of е probe signal 

considered here is small, g=0.01. For increasing strength оё the amplitude, higher orders 

in the expansion may be required. Once рО is known, it is also straightforward ю find the 

successive terms in е expansion. Without entering into а detailed study, some general 

features can easily be drawn from е hierarchy оЁ equations for р®. Similarly to е 

analysis for p(, апа by taking into account that рО is а function exclusively of о0 itis 
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Fig. 6. (а) (x) versus time for two different values оё the coupling К=2 (solid line) апа К=3 (dot line), 
showin§ а clear bifurcation. (b)) Amplitude of {x) vs coupling for а fixed level оё noise. Parameters are а5 
in Fig. 
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straightforward to prove that p@=0 is the only solution unless w=0;#2w,. In general, 
successive terms will depend оп higher harmonics оЁ the main frequency o . 

By applying the theory above, we were able to obtain the amplitude of (x) as 
function оё @е frequency оЁ @е probe signal, shown in Fig. 5. It should be noticed аг 
for increasing noise levels, the peak moves 10 smaller values of о апа еп disappears. 
This was already observed in Fig. 3 and can be interpreted as a sign of a stochastic 
bifurcation. 

We now investigate the case оЁ coupled FHN elements for which the dynamical 
response exhibits bifurcations, even in the absence of a probe signal. The bifurcation, of 
the Hopf-type, is shown in Fig. 6 where we have plotted the amplitude of (x) vs coupling 
for а fixed level of noise. Below some critical coupling strength, the system 18 not 
synchronized and the solution of the FPE is stationary. On the other hand, above this 

critical coupling strength, the system synchronizes and exhibits a time-dependent 
behavior. 

The inclusion of а probe signal will elicit а time-dependent solution оё е FPE, 
even when the system without the probe signal has a stationary solution. The amplitude of 
the response ((x)) depends critically оп the frequency оЁ the probe signal ав is shown in 
Fig.7. In contrast to similar coupled 
systems (see e.g. [10]), increasing the 
coupling does not lead to the «death» of 
the oscillatory region and the optimal 
frequency actually increases а$ е 
coupling is increased. The position and 
amplitude of the peak in Fig. 7 depends on 
the coupling strength. For K=0 the 
response curve does not exhibit а peak 
showing that there is по underlying 
frequency in the problem. Increasing K 
produces an underlying frequency which 
appears as a peak in the curve. Notice that 
for K>2.9 the system will synchronize in 
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the absence оё а probe signal. This, then, 
leads to a response that has two principal 
frequencies: the frequency arising from the 

Fig. 7. Amplitude of (x) versus е frequency of the 
probe signal Юг three different values оЁ the 
coupling strength К=0 (solid line) and К=1 (dot 
line), К=2 (dashed line). Parameters are а5 in Fig. 5 

Hopf bifurcation and the probe frequency. 

4. Summary 

In this paper, we have investigated the single and globally coupled FHN model in 
the presence of noise and an injection signal. We have derived a FPE for the system and 
have shown that we can solve this FPE efficiently by using a suitably chosen expansion. 
We find that there is a classical resonance effect when the frequency of the probe signal 
approaches the one of the underlying system. We also characterize this resonance by 
separating the fast and slow time scales 1 the problem апа find that, for small driving 
amplitudes, the agreement between numerical and analytical results is excellent. Finally, 
we reveal the existence of а stochastic bifurcation (see Fig. 1 апа Fig. 3), manifested by 
the qualitative change оё the peak location in the curves оЁ Aw VS . 

Future work will include е further characterization оё the bifurcation we 
observed. Note that the bifurcation we found is different from the one found in earlier 
work [14]. We plan 10 address these differences in а future publication. In addition, we 
plan ю investigate further the response оё the globally coupled system 10 а probe signal. 
Particular attention will be paid to the possibility that, upon inclusion of an input signal, a 
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population can become synchronized and сап produce а large output signal. By varying 
the intrinsic parameters, including the coupling constant, the response can thus be 
«tuned» аг different frequencies. Whether ог not real neurons make use of this mechanism 
remains 10 be seen. 

This work has been supported by the Office о] Naval Research (Code 331). 
We also thank the National Partnership for Advanced Computational Infrastructure аг 
the San Diego Supercomputer Center for computing resources. 
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ДИНАМИКА ГЛОБАЛЬНО СВЯЗАННЫХ НЕЙРОННЫХ 
ЭЛЕМЕНТОВ ФИТЦХЬЮ - НАГУМО В ПРИСУТСТВИИ ШУМА 

J.A. Acebron, A.R. Bulsara, W.-J. Rappel 

Мы изучаем модель ФитцХью - Нагумо при наличии шума и внешнего 
синусоидального воздействия. Записываем уравнение Фоккера - Планка для 
отдельного элемента и для глобально связанной системы. Представляем 

эффективный способ численного решения этого уравнения Фоккера - Планка и 
показываем, что внешнее воздействие приводит к классическому резонансу, при 
котором его частота совпадает с собственной частотой системы. Этот резонанс 
также исследуется аналитически путем использования различных временных 
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масштабов. В задаче наблюдается хорошее соответствие между аналитическими и 
численными — результатами и  обнаружено  существование — стохастической 
бифуркации. 
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