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This work represents а survey оё the results а! were recently obtained in Ше research 
group supervised by Prof. Dr. Vadim S. Anishchenko and published in a series of scientific 
papers. The presented results are referred 10 statistical description оё dynamical chaos and 10 
the effect of noise оп different types оё chaotic attractors. We consider peculiarities оЁ the 
relaxation оё ап invariant probability measure in systems with chaotic attractors оё different 
types and perform the correlation ап spectral analysis оё chaotic self-sustained oscillations. 

1. Introduction 

Dynamical chaos, like а random process, requires а statistical description. When 
chaotic systems are studied in computer ог physical expriments, probability 
characteristics, such а$ а stationary probability distribution оп ап attractor, correlation 
functions, power spectra and others, are usually calculated or measured. Chaotic 
oscillations that correspond to different types of chaotic attractors in the phase space of 
dynamical systems are characterized by various statistical properties as well as by a 
different degree of sensitivity of the statistical characteristics to the influnce of noise. 

From a viewpoint of the rigorous theory, hyperbolic chaos is often called «true» 
chaos and is characterized by a homogeneous and topologically stable structure [1-4]. 
However, strange chaotic attractors оЁ dissipative systems are по!, ав а rule, robust 
hyperbolic sets. They are rather referred 10 а5 а nearly hyperbolic attractors, e.g., the 
Lorenz attractor. Nearly hyperbolic (quasi-hyperbolic) attractors include some nonrobust 
orbits, e.g. separatrix loops, but their appearances and disappearances often do not affect 
the observed characteristics of chaos, such as a phase portrait, the power spectrum, 
Lyapunov exponents ап others. Dynamical systems in а chaotic regime may give rise 10 
ап invariant measure which does not depend оп ап initial distribution and fully reflects 
the statistical properties оЁ the attractor. The existence оЁ ап invariant measure has been 
theoretically proven for hyperbolic ап nearly hyperbolic systems [5-10]. 

However, the most of chaotic attractors which we deal with in numeric simulation 
and real experiments are nonhyperbolic [11-13]. The problem оЁ the existence of ап 
invariant measure оп а nonhyperbolic chaotic attractor involves serious difficulties 
because it is generally impossible to obtain a stationary probability distribution being 
independent оЁ ап initial distribution. A nonhyperbolic attractor is а maximal attractor оЁ 
the dynamical system and encloses a countable set of both regular and chaotic attracting



subsets [11,12]. When 8-correlated Gaussian noise is added ю the system, ап invariant 
measure оп such attractors exists too [14]. In the nonhyperbolic case the behavior оЁ 
phase trajectories is significantly affected by noise [15-18] while it changes only slightly 
in systems with hyperbolic and nearly hyperbolic chaos [15,16,19,20]. 

A statistical description of noisy nonhyperbolic chaotic attractors is an important 
and still unsolved problem оЁ the dynamical systems theory. One оё the topical problems 
in this direction is to study the relaxation to stationary distributions in time. There are a 
number of fundamental questions which have as yet unclear answers. What is a real 
relaxation time оё the system (0 а stationary distribution? Which factors define this time? 
Which characteristics can quantify the relaxation time 10 the stationary measure? What 18 
the role of the noise statistics and the noise intensity in regularities of the relaxation to the 
stationary distribution? Is there any connection between the relaxation process and the 
system dynamics? These problems are studied in [21,22] with the methods of computer 
simulation. 

The relaxation to а stationary distribution 15 described by е evolutionary operator 
that can be represented by the Fokker-Planck operator or the Frobenius-Perron operator. 
The eigenvalues and eigenfunctions of the evolutionary operator determine the rate and 
character of the relaxation process and characteristics of mixing, which are related to the 
relaxation 10 ал invariant probability measure. However, if the dynamical system is high- 
dimensional (N23), the nonstationary solution оё the Fokker-Planck equation 15 difficult 
enough to find even numerically. Therefore, the method of stochastic differential 
equations was used in the studies described in [21,22]. 

The presence of mixing causes autocorrelation functions to decay to zero for large 
times (correlation splitting). This means that фе system states separated by а sufficiently 
large time interval become statistically independent [6,8,23-25]. From the property of 
mixing it follows that a dynamical system is ergodic. Additionally, for chaotic dynamical 
systems the splitting оё correlations т time is connected with ап instability оё chaotic 
trajectories and with the system property to produce entropy [6,8,23-27]. In spite of their 
significant importance, correlation properties of chaotic processes have been studied 
insufficiently. It is widely believed that autocorrelation functions of chaotic systems 
exponentially decrease at a rate being defined by the Kolmogorov entropy [23]. The 
Kolmogorov entropy, Н,, in юг 18 bounded from above by the sum of positive 
Lyapunov exponents [8,27,28]. But this estimation 15 true only for some special cases. 

It has been proven for some classes of discrete maps (expanding and Anosov 
ones), which exhibit а mixing invariant measure, that the decay оё correlations with time 
is bounded from above by an exponential function [9,29-31]. There are different 
estimations of the rate of this exponential decay which are not always connected with 
Lyapunov exponents [32-34). For continuous-time systems, there are no theoretical 
results аг all for estimating е rate оё correlation splitting [35]. 

The studies of specific chaotic systems testify to a complicated behavior of 
correlation functions, which is defined not only by positive Lyapunov exponents but also 

by different characteristics апа peculiarities of the system chaotic dynamics [32,34,36]. 
In the papers [37-39] the correlation and spectral properties оЁ chaotic oscillations 

are studied for several types of chaotic attractors which can be observed in autonomous 
differential systems with three-dimensional phase space. Classical models of nonlinear 
dynamics such ав the Rossler oscillator [40], the Lorenz system [41], апа е 
Anishchenko-Astakhov oscillator that represents а mathematical model оЁ а real 

radiotechnical device [42] were chosen for the studies. In the cited papers an attempt was 

taken (0 answer several fundamental questions. Which peculiarities оё the system’s 

chaotic dynamics can define the rate of correlation splitting and the basic spectral line 
width? How does noise affect the spectral and correlation characteristics оЁ chaos? 

Basing оп the results оё numerical simulation, we would like 10 show that in the context



of correlation properties, different types оё chaotic self-sustained oscillations can be 
associated with basic models of stochastic processes such as harmonic noise and a 

telegraph signal. 
The aim of this work is to present a brief review of the recent results reported in 

[21,22,37-39]. The presented results concern some probabilistic aspects of chaotic 
dynamics such as peculiarities of the relaxation to a stationary probability distiribution, 
the rate of mixing and the correlation and spectral analysis of chaotic regimes of different 
types. A special attention is paid 1ю the effect of noise оп the statistical properties of 

chaotic dynamics. 

2. Relaxation to a stationary probability distribution of chaotic 
attractors in the presence of noise 

2.1. Models апа numerical methods. We will study chaotic attactors оЁ well- 

known model systems such а5 the Réssler oscillator [40] 

X=-y-z+(2D)"%(1), 

y=x+ay, @) 

i=b-z(m-x), 

and the Lorenz system [41] 

х=- о(--)) + (2D)"%(1), 

y=rx-y-xz, ° ©) 

2 =- Ва + х)у. 

In both models &(7) is а normal white noise source with the mean value (§(1))=0 апа 

correlation (§(¢)E(t+t))=5(t), where 8() is Dirac’s function. The parameter D denotes фе 

noise intensity. For the Rossler system ме fix а=0.2. апа b=0.2 and vary the control 

parameter m in е interval [4.25, 13.0]. In the Lorenz system we choose two different 
regimes, namely, а quasi-hyperbolic attractor (о=10, B=3/3, and r=28) and a nonhy- 
perbolic attractor (0=10, p=8/3, and r=210). 

We integrate Eqs (1) and (2) using а fourth-order Runge-Kutta routine with noise 
sources taken into account. Chaotic attractors of systems (1) and (2) have been studied in 
detail and are typical examples of quasi-hyperbolic and nonhyperbolic chaos [43,44]. 
Thus, results obtained for Egs (1) and (2) can be generalized 10 а wide class оЁ dynamical 
systems. 

To examine the relaxation to a stationary distribution in these systems, we analyze 

how points situated аг ап initial time 1 а cube оё small size & around ап arbitrary point of 
the trajectory belonging 10 ап attractor оё the system evolve with time. We take 8=0.09 
for the size оЁ this cube ап Е1 it uniformly with п=9000 points. As time goes on, these 
points in the phase space are distributed throughout the whole attractor. To characterize 
the convergence to the stationary distribution we follow the temporal evolution оЁ this set 

of points and calculate the ensemble average 

(1) = plug)xdx = 1nZ_ x(1). (3) 

Here, х 15 опе оЁ Ше system dynamical variables, апа р(хг) 15 Ше probability density оё



the variable х at the time ¢ which corresponds to the chosen initial distribution. It 15 
known that е phase trajectory оЁ system (2) visits neighborhoods оЁ two saddle-foci. In 

this case, when calculating х(г) one may first sum separately over points having falled in 
the neighborhood of each saddle-focus, and then combine the obtained results. However, 

the mean value appears to approach zero in а short time interval ап its further evolution 
is badly detected. To follow the relaxation in (2) we compute the mean value when points 
in the neighborhood of only one saddle-focus are taken into account. In this case the 
relaxation 10 this quantity goes more slowly in time. Then we calculate е functiony(z,): 

() =18,(1,1) - %, (1)l @ 

where X (r,) ап X, (¢,,,) are successive extrema оЁ Х( ‹ ). Thus, y(1,) characterizes е 
amplitude оЁ the mean value oscillations. In the expression (4) £, and ¢, , are successive 
time moments corresponding to е extrema оё x. The temporal behavior оЁ y(z,) allows 
to judge the character and the rate of relaxation to the probability measure on the 
attractor. 

We also calculate the maximal Lyapunov exponent (LE) A, of a chaotic trajectory 
оп ап attractor. Besides, we also compute фе normalized autocorrelation function (АСЕ) 
of steady-state oscillations x(1): 

(1) = 9(@p(0), ) = x(O)x(t+7)) - (1)) (x(t+))- ©) 

The brackets (...) denote time averaging. 
To make some figures more informative and compact, instead of y(z,) апа W(x) ме 

plot (where it 15 necessary) their envelopes y,(¢,) апа () respectively. 

2.2. Relaxation 10 а stationary distribution in the Rissler system: Mechanism о] 
the effect о] noise оп е rate о] mixing. A chaotic attractor realizing т the Rossler 
system (1) аг fixed a=b=0.2 апа in the parameter m interval [4.25, 8.5] serves аз а well- 
known example of a spiral attractor. The phase trajectory on the spiral attractor rotates 
with а high regularity around one ог several saddle-foci. The autocorrelation function is 
oscillating and the power spectrum exhibits narrow-band peaks corresponding to the 
mean rotation frequency, its harmonics апа subharmonics. By virtue оЁ these properties 
spiral chaos 15 called phase-coherent [43,45-47]. 

The chaotic attractor оё system (1) is qualitatively changing а5 the parameter m 
increases. In the interval 8.5<m<13.0 there occurs a nonhyperbolic attractor of 
noncoherent type, called funnel attractor [42,46]. Phase trajectories оп the funnel attractor 
make complicated loops around а saddle-focus and thus, demonstrate а nonregular 
rotation behavior. Consequently, the autocorrelation function оЁ noncoherent chaos 
decreases much rapidly than that in the coherent case, and the power spectrum does not 
already contain sharp peaks. 

The calculations performed for теЕ[4.25, 7.5] (spiral chaos) and for m€&[8.5, 13.0] 
(noncoherent chaos) allow to assume that an invariant probability measure exists for the 
parameter values considered. All the effects being observed for each type of attractor in 
е system (1) аге qualitatively preserved when the parameter / is varied. In our numeric 
simulation we fix m=6.1 for the spiral attractor and m=13.0 for the funnel attractor. 

Figure 1 shows the typical behavior оЁ y(t) for both the spiral and the funnel 
attractor оЁ Ше Réssler system. We find that the noise significantly influences the rate оЁ 
mixing in the regime оЁ spiral attractor in the Rossler system. The relaxation time 15 
strongly decreasing for increasing noise intensity (see Fig. 1,a). 

We find а quite different situation for е funnel attractor. Noncoherent chaos is 
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Fig. 1. y,(t,) ог attractors in фе Rossler system (1). @) For the spiral attractor @ =b=0.2, m=6.1) at D=0 
(curve 19, D=0.001 (curve 2), and D=0.1 (curve 3); (b) Юг the funnel atiractor (a=b=0.2, m=13) а: D=0 
(solid line) апа D=0.01 (dotted line) 

practically insensitive 10 noise perturbations. Behavior оЁ y,(r,) does not significantly 

change when noise is added to Едв (1) (see Fig. 1,5). At the same time, it is well known 
that noncoherent chaos exhibits a close similarity to random processes. This fact can be 
verified, e.g. by means of the autocorrelation function W(x) for the spiral and the funnel 
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Fig. 2. Envelopes оё the normalized autocorrelation function®, (t) for attractors in (1). @) At m=6.1 and 
for D=0 (solid line) and D=0.01 (dorted line); (b) а! m=13 for В:О (solid line) and D=0.01 (dotted line) 

attractors in system (1) (Fig. 2). Our numerical experiments show that the correlation 
times are essentially different for these two chaotic regimes: without noise they differ by 
two orders. On the one hand, in the case оЁ coherent chaos the correlation time decreases 
dramatically in the presence оё noise (Fig. 2, а). On the other hand, the autocorrelation 

function ог the funnel attractor in the 
M deterministic case practically coincides with 
M that in the presence of noise (Fig. 2, b). 

Hence, noncoherent chaos, which 15 

0.10 nonhyperbolic, demonstrates some рго- 
perty of hyperbolic chaos, i.e. «dynamical 
stochasticity» turns out to be much stronger 

0.08 than that imposed from ап external 
(additive) one [6]. This experimental result 
is interesting and requires a more detailed 
consideration. It is also worth noting 
another finding of our simulations. We 
have found that the positive LE for both the 
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Fig. 3. Еог the Rossler system, A, оп the spiral 
(triangles) and the funnel (circles) attractor а$ 
functions of the noise intensity D 

spiral chaos and the funnel chaos is weakly 
sensitive to fluctuations (see Fig. 3), and



rather grows not much with increasing noise intensity, whereas in certain cases the 
correlation time changes considerably under the influence of noise. Thus, in the regime of 
spiral chaos the rate оё mixing is not uniquely determined by the largest LE but depends 
strongly оп the noise intensity. 

We suppose а! the essential effect оЁ noise оп relaxation to the stationary 
distribution in the regime оЁ spiral chaos may be associated with peculiarities of the phase 
trajectory dynamics in the neighborhood of an unstable equilibrium state. Since the 
trajectory rotates almost regularly оп the spiral attractor, the relaxation process appears to 
be very long. The addition оё noise to е system destroys the relative regularity оё the 
trajectory and, consequently, the rate оё mixing significantly increases. 

1t is known that for chaotic oscillations one can introduce фе notion оЁ instan- 
taneous amplitude апа phase [47]. The instantaneous phase characterizes the rotation of a 
trajectory around a saddle-focus. System (1) is of such type because the trajectory in the 
(x-y) projection rotates around the unique saddle-focus located very near to the origin. 
Let us introduce the substitution of variables 

x(t) = А(соФ(0), — у(г) = A(1)sind(r), (6) 

that defines the amplitude А( г) and the total phase ®(¢) of the chaotic oscillations. Then 
the instantaneous phase Ф(г) can be calculated а5 follows: 

Ф(г) = arctan(y(¢)/x(1)) + =n(r), (7) 

where п(г)=0,1,2,... 15 the number оё intersections оЁ the phase trajectory with фе plane 
x=0. 

The component of mixing along the flow of trajectories is related with the 

divergence of the instantaneous phase values and thus, is determined by the temporal 

behavior оЁ the phases. The instantaneous phase оЁ ап ensemble оЁ initially close 

trajectories on the spiral attractors remain very close to each other over a long period of 

time, although е points in е secant plane are spread over the whole attractor section. 

In this case the relaxation 10 а stationary probability distribution оп the whole attractor оЁ 
а flow system will be much longer ап that in the Poincaré map. The violation оЁ regular 

rotation оЁ trajectories is characteristic for е funnel attractor and leads Ю а 

nonmonotonic dependence of the intantaneous phase on time. The phase trajectory 

creates complicated loops at nonequal time intervals ас causes е value оё the current 

phase ю slightly decrease. This results in а rapid divergence оЁ the phase values оЁ 

neighboring trajectories. The influence оЁ noise оп spiral chaos leads 10 similar effects. 

Figure 4, а shows the temporal dependences оЁ the variance o,” of the instantaneous 
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Fig. 4. Characteristics оЁ the instantaneous phase divergence of neighboring trajectories for spiral chaos 

(m=6.1) and funnel chaos (m=13) in Eqs (1). (@) Temporal dependences оЁ the variance оЁ the 

intantaneous phase @, 2 for spiral chaos at D=0 (curve 1), D=0.1 (curve 2), and for noncoherent chaos а! 

D=0 (curve 3), D=83 (curve ). (b) The effective diffusion coefficient В уу а5 а function of the noise 

intensity D for spiral (curve 1) апа noncoherent (curve2) chaos 



phase оп ап ensemble оё initially close trajectories for both the spiral and the funnel 
attractor of system (1). We observe that in both the noisy and the noise-free case the 
variation grows almost linearly on the time intervals being considered. The fact that the 
temporal dependence of the instantaneous phase variance of the chaotic oscillations in the 
Réssler system 15 а linear function was assumed in [-x]. Nevertheless, this suggestion 
was confirmed neither theoretically nor numerically ог experimentally. In е case оЁ 
spiral chaos without noise (curve ), the value of o, is small (on the given time interval 
it does not exceed the variation оё the uniform phase distribution оп the interval [-w;x]) 
and increases much slower than in the other cases considered. The linear growth of the 
variation allows to estimate the divergence оЁ the intantaneous phases by using the 
effective diffusion coefficient: 

B = Yydo () ® 
Figure 4, Ь illustrates the dependences оЁ В.„ ОЁ the instantaneous phase of chaotic 
oscillations оп the noise intensity for both the spiral апа @е funnel attractor т the Rossler 
system (1). It 15 seen that in both cases B, grows with increasing D but for spiral chaos 
this growth is more significant. This result strongly testifies that B, is а very effective 
characteristic for diagnosing the statistical properties of а chaotic attractor in е presence 

оё fluctuations. 

2.3. Relaxation to a probability measure in the Lorenz systems. Well-known 

quasi-hyperbolic attractors in three-dimensional continuous-time systems, such а$ е 
Lorenz attractor, the Morioka-Shimizu attractor [48], are attractors оЁ the switching type. 
The phase trajectory switches chaotically from the neighborhood оЁ one saddle 
equilibrium state to the neighborhood of another one. Such switchings are accompanied 
by chaotic phase changes even without noise. In this case the addition of noise does not 
change considerably the phase dynamics and, consequently, does not influence the rate оЁ 
relaxation to the stationary distribution. 

Figure 5 shows the behavior of y,(z,) for both quasi-hyperbolic апа nonhyperbolic 
chaotic attractors of the system (2) with and without noise added. We find that noise does 
not significantly influence the relaxation rate for е Lorenz atractor (Fig. 5, а). 
However, we observe а quite different situation for the nonhyperbolic attractor. There the 
rate оЁ relaxation is strongly affected by noise (Fig. 5, b). 

Now we are going to check whether the other characteristics of the mixing rate, 
such аз the LE and the correlation time, will also depend оп noise perturbations. For the 
same chaotic attractors in the Lorenz system we compute е largest 1Е A, and estimate 
the normalized autocorrelation function W(x), v=t,-t,, оё the dynamical variable х(г) for 
different noise intensities О. We find that for both types оё chaotic attractors the LE does 
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Fig. 5. y(¢,) for chaotic attractors in the Lorenz system (2). (а) For r=28 апа D=0 (solid line), and 
D=0.01 ?dou:d line); (b) for =210 and D=0 (thick line), апа for /=210 and D=0.01 (thin line). Other 
parameters are 0=10, В=8/3 
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Fig. 6. Envelopes of the normalized autocorrelation function W, (t) for attractors in system (2). @) r=28 
апа D=0 (solid line), апа D=0.01 (dotted line); () =210, D=0 esolid line), апа D=0.01 (dotted line) 

not depend within the calculation accuracy on the noise intensity. The autocorrelation 
function оЁ the quasi-hyperbolic attractor is practically not affected by noise (see curves I 
and 2 in Fig. 6, a). However, in the regime of a nonhyperbolic attractor it decreases more 
rapidly in the presence of noise (see curves in Fig. 6, b). 

3. Correlation and spectral analysis of dynamical chaos 

Let us now examine correlation and spectral properties оё different types оЁ chaotic 
oscillations т more details. Ехрепепсе оЁ the studies of dynamical chaos т three- 
dimensional differential systems shows that two classical models оЁ random processes 
can be used to describe the correlation and spectral properties of a certain class of chaotic 
systems. They are the models of harmonic noise and a telegraph signal. 

As we will demonstrate below, the model of harmonic noise represents sufficiently 
well correlation characteristics of spiral chaos, while the model of telegraph signal is 
quite suitable for studying statistical properties оё attractors оЁ the switching type, such а5 
attractors 1 the Lorenz system [41] апа in the Chua circuit [49]. 

In the following we summarize the main characteristics of the above mentioned 
classical models of random processes. 

Harmonic noise is а stationary random process with zero mean. It is represented as 
follows [50-52]: 

(1) = R[1+a(0) coslug+4(0)], © 
where К, and о, are constant (average) values оё the amplitude and frequency оЁ 
oscillations, respectively; а(г) and ¢(r) аге random functions that characterize amplitude 
and phase fluctuations, respectively. The process a(f) 15 assumed 10 be stationary. 

Several simplifying assumptions which are most often used are as follows: (i) the 
amplitude and phase fluctuations are statistically independent, and (ii) the phase 
fluctuations ¢() represent а Wiener process with а diffusion coefficient В. Under the 
assumptions made, the АСР оё the process (9) can be written ав follows [50-52]: 

() = Y5 R[1+K () ]exp(-Bltl)cosuyT, (10) 

where K () is the covariation function of reduced amplitude functions a(r)!. Using the 
Wiener-Khinchin theorem one can derive the corresponding expressions for the spectral 
power density. 

Iprefactor R 2[1+K () is е covariation function K,(x) of the random amplitude 
A(#)=Ry[1+a(f)]. This notion 15 most convenient to шее in our further studies. 

11



Generalized telegraph signal. This process describes random switchings between 
two possible states x(f)=+a. Two main kinds оё telegraph signal are usually considered, 
namely, random and quasi-random telegraph signals [52,53]. A random telegraph signal 

is characterized by а Poissonian distribution оё switching moments 7. The latter leads 10 
the fact that the impulse duration @ has the exponential distribution: 

p(6) = nexp(-n0), €20, (11) 

where 7, 15 the mean switching frequency. The АСЕ оё such а process сап be represented 

as follows: 
y(x) = a’exp(-2n, ). (12) 

Another type оё telegraph signal (а quasi-random telegraph signal) corresponds 10 
random switchings between the two states x(f)=xa, which can occur only in discrete time 
moments ( =пбу+а, п=1,2,3,..., where E=const and а is а random quantity. If фе 

probability оё switching events 15 equal 10 1/,, then the АСЕ оЁ this process is given by 
the following expression: 

() = aX1-hlfgy), ЕЫ <k 

W) =0, ЕЫ 2 &, 

3.1. Correlation апа spectral analysis о] spiral chaos. From а physical 
viewpoint, chaotic attractors of the spiral type possess the properties of a noisy limit 
cycle. However, spiral attractors are realized in fully deterministic systems, i.e., without 
external fluctuations. Consider the regime оЁ spiral chaos in the Réssler system (1) for 
а=5=0.2 апа m=6.5. Let us introduce е instantaneous amplitude A(f) апа phase Ф(г) 
according to the relations (6). We calculate е normalized autocorrelation function of the 
chaotic oscillations x(t) (grey dots region I, Fig.7), the covariance function оё the 
amplitude K, (1) and the effective phase diffusion coefficient В. Figure 7 shows the 
results for W (т) т the system (1) both without noise and т the presence оё noise. The 
АСЕ decays almost exponentially both without noise (Fig. 7, а) апа in the presence оЁ 
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Fig. 7. Normalized АСЕ оё the х(г) oscillations in 
system (1) for m=6.5 (grey dots region I) and its 

D=0.0 approximation by (2) (black dots 2) for D=0 (a) 
: and D=10" (b). The envelopes of АСЕ in а linear- 

logarithmic scale for different D (с) 
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й noise (Fig. 7, b). Additionally, ав seen from 
0.01 Fig. 7, ¢, Юг т<20 there is ап interval оп 

which the correlations decrease much faster. 
Using Eq. (10) we can approximate 

-1.0 the envelope of the calculated АСЕ W (x). 
0 200 400 600 ® To do this, ме substitute the numerically 
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computed characteristics К, (z) and В=В „; into ап expression for the normalized envelope 
г(): 

T(x) = К, (v)/K, (0)exp(-B,4ll). (14) 

The calculation results for I'(x) аге shown 1 Fig. 7, а, b by black dots (curves2). It 
is seen that the behavior of the envelope of W (t) is described well by Eq. (14). Note аг 
taking into account е multiplier K, (v)/K,, (05 enables us 10 obtain а good approximation 
for аП times т. This means 1аг фе amplitude fluctuations play а significant role оп short 
time intervals, while the slow process of the correlation decay is mainly determined by 
the phase diffusion. Thus, we can observe a surprisingly good agreement between the 
numerical results for the spiral chaos and the data for the classical model of harmonic 
noise. At the same time, it is quite difficult to explain rigorously the reason of such a 
good agreement. Firstly, the relationship (10) was obtained by assuming the amplitude 
and phase values to be statistically independent. However, this approach cannot be 
applied to а chaotic regime. Secondly, when deriving (10) we used the fact that the phase 
fluctuations are described by а Wiener process. In the case оё chaotic oscillations, ®(7) 15 
а more complicated process and its statistical properties are unknown. It is especially 
important 10 note that the findings presented т Fig. 7, а were obtained in the regime оЁ 
purely deterministic chaos, i.e. without noise in the system. 

We have shown that for t>t__ the envelope of the АСЕ for the chaotic oscillations 
сап be approximated by the exponential law exp(-B,,ttl). Then according to е Wiener- 
Khinchin theorem, е spectral peak а! the average frequency o, must have а Lorenzian 
shape and its width is defined by the effective phase diffusion coefficient В: 

S(w) = СВ /[B? ;+(w-wy)’], — С =const. (15) 

The calculation results presented in Fig. 8 justify this statement. The basic spectral 
peak is approximated by using (15) апа this fits quite well with the numerical results for 
the power spectrum оё фе x(¢) oscillations. We note аг е findings shown т Figs 7 and 
8 for the noise intensity D=10" have also been verified for different values оЁ D, 
0<D<10?, ав well ав for the range of parameter m values which correspond 10 the regime 
of spiral chaos. Our findings for the approximation of the АСЕ and the shape оё the basic 
spectral peak are completely confirmed by our investigations оё spiral attractors in other 
dynamical systems. 

The spectral and correlation properties оЁ spiral chaos were also explored in а 
physical experiment with the Anishchenko-Astakhov oscillator [42,43]. The performance 
of such kind of experiment is important as the stochastic equations of the oscillator are 
approximate only and cannot take into account all sources оЁ natural fluctuations аг are 
really operating in the electronic scheme of the oscillator. Experimental results are 
presented in Fig. 9 апа completely confirm all the data obtained numerically. 

S/Smdg. ¥ 
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-0.5 

=500 -===—— == -1.0 
095 100 105 110 LIS @ 00 00125 00250 00375  т,5 

Fig. 8. A part of the normalized power spectrum of Fig. 9. Normalized АСЕ of е x(¢) oscillations in 
x(1) oscillations in system (1) for а=5=0.2, and — Ше Anishchenko-Astakhov oscillator( region 1) апа 
m=6.5 (solid line) and its дрргохішгішп%увч. (15) $ exponential approximation ехр(- В.!) (curve 
(dashed line) for the noise intensity D=10" 2) (physical experiment). The phase diffusion coef- 

ficient В уу was calculated from experimental data 
independently on the ACF 
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3.2. Correlation characteristics of the Lorenz attractor. In the previous section 
ме have used the effective phase diffusion coefficient to describe the correlation 
properties of the Rassler system and the Anishchenko-Astakhov oscillator. However, 
such ап approach cannot be applied 10 approximate autocorrelation functions оё chaotic 

oscillations of a switching type. Some chaotic attractors demonstrating a rather complex 

structure can contain cerfain regions which are separated by manifolds о saddle points 

and cycles. Transitions (switchings) between these regions сап occur provided аг 

certain conditions are fulfulled [54]. Such oscillations can be observed, for example, 11 
the Lorenz system [41]. Let us consider the Lorenz system in the regime of the quasi- 

hyperbolic attractor for r=28, с=10, апа 5=8/3. 

In the phase space of the Lorenz system there are two saddle-foci that are 

symmetrical about the z-axis and are separated by the stable manifold of a saddle point in 

the origin. This stable manifold has a complex structure that allows the trajectories to 

switch between the saddle-foci in specific paths [11,54] (see Fig. 10). Unwinding about 

Fig. 10. Qualitative illustration of the structure оё manifolds in the Lorenz system 

one of the saddle-foci the trajectory approaches the stable manifold and then can jump to 
the other saddle-focus with а certain probability. The rotation about the saddle-foci does 
not contribute considerably to the decay of the ACF, while the frequency of «random» 
switchings essentially affects the rate of the АСЕ decay. Consider the time series оё the x 

coordinate of the Lorenz system, that is 
х & shown in Fig. 11. If one introduces а 

! ! ! { Lol ; symbolic dynamics, i.e., one excludes the 

100} Н Ё ! i } i rotation about the saddle-foci, one obtains a 

0.0 

-10.0 

-20.0 
0 5 10 15 t 

Fig. 11. Telegraph signal (solid curve) obtained for 
the x(r) oscillations (dashed curve) оё the Lorenz 
system а! 0=10, В=8/3, ала r=28 

telegraph-like signal. Figure 12 shows the 
АСЕ of the x(t) oscillations for the Lorenz 
attractor and the ACF of the corresponding 
telegraph signal. Comparing these two 
figures we can state that the time of the 
correlation decay and the behavior of the 
АСЕ оп this time scale are predominantly 
determined by switchings, whereas the 
rotation about the saddle-foci makes a 
minor contribution to the ACF decay on 
large times. It is worth noting that the ACF 
decreases linearly on short times. This fact 
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Fig. 12. The АСЕ оё the х(г) oscillations (a) ала of the telegraph signal (b) 

is remarkable as the linear decaying of the ACF corresponds to a discrete equidistant 
residence time probability distribution in the form оё d-peaks. Additionally, the 
probability of switchings between the two states is equal 10 1/, [52,53]. 

Figure 13 shows the residence time distribution calculated for the telegraph signal 
resulting from switchings т е Lorenz system. As can be seen from Fig. 13, а, the 
residence time distribution in the two attractor regions really has а structure Наг is quite 
similar to an equidistant discrete distribution. At the same time the peaks are 
characterized by a finite width. Figure 13, b represents the probability distribution of 
switchings which occur at multiples of 5., where &, is the minimal residence time in one 
оё the states. This dependence shows that the probability оё transition аг time&, is close 10 
1/,. The discrete character of switchings can be explained by peculiarities of the structure 
оё the manifolds of е Lorenz system (see Fig. 10). In the vicinity of the originx=0, y=0 
the manifolds split into two leaves. This leads to the fact that probability of switchings 
between two states in one revolution about the fixed point is approximately equal to 1/. 
This particular aspect оё the dynamics ensures аг the АСЕ оё the x(r) and y(r) 
oscillations on the Lorenz attractor has the form defined by expression (13). However, 
the finite width оЁ the peaks in the distribution and deviations from the probability !/, can 
lead 10 ап АСР that decays 10 а certain finite, nonvanishing value. 

Р Р 
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023 
02 92 0.2 

0.064 

0.0 0.0 | Hr‘]“.fi‘.?fi\_l 
о 2 4 6 8 : 5 280 380 450580680 T8 T 

b 
Fig. 13. The distribution оё impulse durations оё the telegraph signal (@) and probabilities of transitions аг 
times multiple to &, (6) 
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4. Conclusion 

In our studies we have shown that there is a group of nonhyperbolic attractors of 
spiral type for which noise strongly influences the characteristics of the relaxation to a 
stationary distribution as well as the correlation time and practically does not change the 
positive Lyapunov exponent. 

The rate оё mixing оп nonhyperbolic attractors 1 R? 15 determined not only by the 
positive Lyapunov exponent but also depends on the instantaneous phase dynamics of 
chaotic oscillations. In е regime оё spiral chaos noise causing phase changes can 
essentially accelerate the relaxation 10 а stationary distribution. 

For chaotic attractors with a nonregular behavior of the instantaneous phase the 
rate of mixing cannot be considerably affected by noise. This statement is true for 
nonhyperbolic attractors о funnel type and for the attractors of switching type, for 
example, for the quasi-hyperbolic Lorenz attractor. 

We have shown in our numerical simulation that the spiral chaos retains to a great 
extent the spectral and correlation properties of quasi-harmonic oscillations. With this, 
the rate of correlation splitting in a differential system depends on short times on both the 
instantaneous amplitude and the instantaneous phase diffusion. The width оё the basic 
peak т фе power spectrum оё е spiral chaos is correspondingly defined by В „; and 
oscillations of the instantaneous amplitude determine the level of the spectrum 
background. The effective phase diffusion coefficient in а noise-free system is defined by 
its chaotic dynamics but is not directly related to е positive Lyapunov exponent. 

Our studies оЁ statistical properties оЁ the Lorenz attractor have demonstrated that 
the properties of the ACF is mainly defined by a random switching process and slightly 
depends on the rotation about the saddle-foci. The classical model of telegraph signal 
enables one to describe е behavior оЁ у(т) for the Lorenz attractor by using the 
expression (13). In particular, this expression approximates quite well a linear decay of 
the ACF from 1.0 to 0.2 that allows to estimate theoretically the correlation time. The po- 
мег spectrum оЁ the Lorenz attractor both in а flow and т the Poincaré тар was studied 
in [36] by applying the symbolic dynamics methods. Already in this paper it has been 
established that the power spectrum is not a Lorenzian. Our results obtained by using the 
mode] of telegraph signal аге in а good agreement with the findings presented in [36]. 
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СТАТИСТИЧЕСКИЕ СВОЙСТВА ДЕТЕРМИНИРОВАННЫХ 
И ЗАШУМЛЕННЫХ ХАОТИЧЕСКИХ СИСТЕМ 

B.C. Анищенко, T.E. Вадивасова, Г.И. Стрелкова, Г.А. Окрокверцхов 

Данная работа представляет собой обзор результатов, недавно полученных B 
группе исследователей, возглавляемой профессором B.C. Анищенко, и опублико- 
ванных в ряде научных статей. Представляемые результаты OTHOCATCH K 
статистическому описанию динамического хаоса и влиянию шума на различные 
типы хаотических аттракторов. Рассматриваются особенности  релаксации 
инвариантной вероятностной меры в системах с хаотическими аттракторами 
различных типов, проводится корреляционный и спектральный анализ хаоти- 
ческих автоколебаний. 
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