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SMALL-WORLD NETWORKS: 
DYNAMICAL MODELS AND SYNCHRONIZATION 

Viadimir N. Belykh, Igor V. Belykh, апа Martin . Hasler 

This paper provides а short review оё recent results оп synchronization in small-world 
dynamical networks of coupled oscillators. We also propose a new model of small-world 
networks of cells with a time-varying coupling and study its synchronization properties. It is 
shown that such а time-varying structure of the network can ensure more reliable 
synchronization than the conventional small-worlds. The term «small world» refers to a 
network of locally connected nodes having a few additional long-range shortcuts chosen at 
random. The addition оё фе shortcuts sharply reduces с average distance between the nodes 
and therefore provides the so-called smali-world effect. Discovered first in social networks, 
the small-world effect appeared to be а characteristic оё many real-world structure both 
human-generated ог of biological origin. For social networks, this property implies that 
almost any pair of people in the world can be connected to one another by a short chain of 
intermediate acquaintances, of typical length about six. However, the structure оё social 
networks is not homogeneous, there are always key persons аг provide distant out-local- 
world connections between people. This paper 15 written in honor оё е 60th birthday оё our 
friend and colleague, Wadim S. Anishchenko, who is one of such key persons in the 
Nonlinear Dynamics community. 

1. Introduction 

The study of networks pervades all of science, from physics and neurobiology to 
engineering and social sciences. From the perspective of nonlinear dynamics, we would 
like to understand how а huge network оё interacting dynamical systems be they neurons, 
computers connected in Internet ог power stations will behave collectively, given their 

individual dynamics and coupling structure [1]. This paper contributes to elucidate the 
relation between the network dynamics and graph theory and to apply mathematical 
theory оЁ synchronization 10 networks of different nature. Ordinarily, е connection 
topology is assumed to be either completely regular or completely random. However, 
many biological, technological, and social networks lie somewhere between these 
extremes. In 1998, Watts and Strogatz found a simple model of networks that can be 

tuned through this middle ground: regular coupled networks with the addition of 

increasing amounts оё disorder (а few additional randomly arising connections). These 

coupled systems were called «small-world» networks [2], by analogy with the small- 

world phenomenon. 

This famous phenomenon was discavered м 1967 by the american social 
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psychologist Milgram [3]. He performed а simple experiment а5 follows. He sent roughly 
300 letters to randomly selected people in Omaha, Nebraska with the instruction to get 
the letter 10 а single «target» person in Boston using only personal contacts. Milgram 
gave each «sender» some information about the target including name, location, and 

occupation, so that if the sender did not know the target (and it was extremely unlikely 
that they would), they could send the letter to someone they did know who they thought 
would be «closer» to the target. Thus began a chain of senders, each member of the chain 
attempting to zero is on the target by sending the letter to someone else: a friend, family 
member, business associate, ог casual acquaintance. Milgram’s surprising finding was 
that for the 60 chains that eventually reached the target, the average number of steps in a 
chain was around six, a result that has entered folklore as the phrase «Six degrees of 
separation». From this experiment, Milgram concluded that six was the average number 
of acquaintances separating any two people in the world. Given the form of Milgram’s 
experiment, опе could be forgiven for supposing that фе figure six is probably not а very 
accurate one. The experiment certainly contained many possible sources for errors. 
However, the general result that two randomly chosen human beings can be connected by 
only short chain оЁ intermediate acquaintances has been subsequently verified, and is now 
widely accepted. This small-world property of social networks, that the average distance 
between the nodes is relatively short, has been shown to be widespread in many other 
real-world structures including the WWW connections [4], scientific networks [5], 
epidemiological models [6], electrical power grid [7], electronic circuits [8] and neural 
and biochemical networks [9,10]. 

The semi-random model of Watts and Strogatz, that reproduces remarkably well 
main characteristic of many real-world networks, is the following. It starts from a ring 
lattice with п vertices (the pristine, original, world), each node is connected 0 its 2 
nearest neighbors (periodic boundary conditions are applied just for convenience and not 
strictly necessary). Then shortcuts links are added between random pairs of nodes with 
probability p per link. Watts and Strogatz conjectured that dynamical systems coupled in 
this way would display enhanced propagation speed, synchronizability and computation 
power, а$ compared with regular lattices оё the same size [1]. The inwition 15 аг the 
short path could provide high-speed communication channels between distant parts of the 
system, thereby facilitating any dynamical process (like synchronization or computation) 
that requires global coordination and information flow. 

This model has been the subject of significant recent interest within the physics, 
mathematics, and engineering community. Most theoretical studies were concerned with 
statistical and combinatoric properties of small-world networks (graphs) where the cells 
do not have the individual temporal dynamics [1]. Dynamical processes on small-world 
networks were studied relatively little and mainly by means of computer simulation 
[7,10-12]. In particular, it was numerically shown а! small-world connections may 
essentially improve synchronization properties of networks of limit-cycle and chaotic 
oscillators. In turn, synchronization in networks оЁ periodic and chaotic oscillators with 
different regular and random coupling configurations has been intensively studied [13-21]. 

More recently, significant progress in the study of the relation between the addition 
of random shortcuts and the synchronization properties of networks was made by 
Barahona and Ресога [22]. They applied the Master Stability function approach [18] to 
the study of local synchronization in small-world networks and showed, through 
numerics and analysis, how the addition of random shortcuts improves network 
synchronizability. The connectivity matrices G were once chosen at random and then 
fixed forever. This is the usual approach of defining the small-world networks. Within 

this approach, statistics of the connectivity matrices G was translated into statistics of the 
synchronization thresholds. 

In this paper, we propose a new model of dynamical small-world networks where 
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the shortcuts change as а function ов time [23]. Instead оЁ randomly choosing the 
shortcuts апа leaving them fixed, we randomly choose the shortcuts, leave them only for 
ап interval оё time т fixed, then randomly choose another set оЁ shortcuts, leave them 

again for а lapse ов time < fixed, etc. More precisely, our probabilistic model is the 
following. During each time interval of length, every possible shortcut 15 turned оп with 
probability p, independently of the switching on and off of the other shortcuts, and 
independently оё whether ог not it has been turned оп during the previous time interval. 
Furthermore, we assume that the switching time т is small with respect 10 the intrinsic 

time constants of the dynamics of the individual cells. 
This way оё transforming а network with fixed couplings, the «pristine world», into 

а time-varying small-world network can always be applied. We call it the «blinking 
model» [23]. In this paper, we shall concentrate on global synchronization in the 
important example where the pristine world is а ring оё 2k-nearest neighbor coupled 
chaotic oscillators. The methods developed here, however, are more generally applicable. 

The blinking model is actually of practical importance. In practice, often 
collections of subsystems that are organized into a network actually interact only 
sporadically. This is true т biology as well а5 т technology. Neurons 1 the brain send 
out electrical signals in the form of spikes and most of the interaction with the other 
neurons takes place during the arrival оё the spikes аг the connection points, the synapses. 
Since the spike duration is usually small with respect to the interspike intervals, this is an 
important example of «blinking» interaction. Of course, here the occurrence of spikes of 
different neurons апа аг different times are not just independent random variables, and фе 

spike durations are actually caused by the dynamics of the individual neurons. 
Nevertheless, the distant node interaction is of intermittent nature. 

In technology, practical systems exist that can be modelled rather precisely by the 
blinking model. Packet switched networks such as the Internet are an important example. 
Dynamical processes in the computers that are networked through Internet interact by 
sending messages that are subdivided into packets and sent over the network. Both in the 
network links as in the computers themselves, they have to share the available 
communication time slots with many other packets that belong to communications 
between different computers and/or different processes. The occurrence of the other 
packets can be considered а$ independent, and the timeslots available for the 
communication between specific processes can also often been considered independent 
due 10 the congestion оё the links by е other packets, Thus, the blinking model may be 
appropriate in many different situations. 

The model of small-world networks, that we propose, consists of the pristine world 

(the regular locally coupled lattice of oscillators) and time-dependent on-off coupling 
between any other pair of cells. Hence we consider the network 

х =F(x)+Z e (WP, i=1,.n, ) 

where x=(x},....xf) is the d-vector of the coordinates оЁ the i-th oscillator, and ц 5 а 
scalar parameter. The matrix P determines by which variables the oscillators are coupled. 
The nxn connectivity matrix G=e, (f) is symmetric and has vanishing row-sums and 

» &; 20 for izj, апа 5,_‘:—2.” nonnegative off-diagonal elements such that ¢, =¢, `ар 

i=1,...,n. The number оё non-zero off-diagonal elements оЁ the matrix Gequals m. 
As the pristine world, уе take а conventional network, а ring оЁ 2k-nearest 

neighbor coupled oscillators. In this case the connectivity matrix G, corresponding to 
the blinking model, has @е 2k adjacent diagonals with the coupling constants ¢ and оп- 
off time-dependent small-world connections parameters ¢, () standing 1 ай remaining 
places оё the matrix G, where r=12,... n(n-2k-1)/2. ” 

We assume the functions ¢, nl,(ll") 10 be binary signals аг take the constant value e 
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with probability р and the value 0 with probability д=1-р in time interval оЁ length <. 
Therefore the random variables ¢, ‚(тт) are independent and identically distributed for 
different т апа . We assume that i=t/T<<1, where T is а characteristic transient time оЁ 
the individual oscillator, апа т can be also interpreted а5 а characteristic interval оё the 

time-varying connectivity matrix G. 
Typically, in networks of continuous time oscillators, synchronization becomes 

stable when е coupling strength between the oscillators exceeds а critical value. In this 
context, a central question is to know the bounds on the coupling strengths such that the 

stability оё synchronization is guaranteed. In this paper, we obtain е conditions for the 
stability of the synchronous state in the blinking model and reveal their dependence on 
the coupling configuration, probability p of reswitchings, and properties of the individual 
oscillators. 

2. Synchronization in the pristine world 

We start оЁЁ with the study оё global synchronization in е blinking model by 

considering first synchronization in the pristine world. 

To calculate analytical bounds for the synchronization threshold value of coupling 

in the ring оЁ 2k nearest neighbor coupled oscillators, we apply our Connection Graph 

Stability method, developed in [24], 10 this network. This general synchronization method 

combines the Lyapunov function approach with graph theoretical reasonings and allows 

us to tackle the problem оЁ global stability оё synchronization in rather irregular 

complicated networks. 
Hereafter, we omit the proofs [24] and describe only the main results. For the 

pristine world, sufficient conditions оЁ global synchronization are: 

е> ¢ = (aln)R(k,n), ' 2 

where а is а parameter defined by the individual node dynamics and introduced similar 10 

[19,21], апа R (k,n)=(n/2k)*<L?(0), where L(0) is the average path length of the pristine 

world [2]. Consequently, we obtain the following bounds on the synchronization 

thresholds of global synchronization ш the pristine world with the 2 diagonals: 

е> &* = an¥(8%). (3) 

One can check the effectiveness апа generality оё the estimate (3) for different & For one 

extreme case where k=1, the network 15 а ring оё diffusively coupled oscillators and the 

estimate takes the form 

£ =an, 

where а=а/8. This estimate presents а quadratic law оё the dependence оЁ the 

synchronization threshold оё global synchronization оп the number оЁ oscillators. For 

another extreme case where k=int(n/2), а oscillators оё the ensemble are globally 
coupled and the estimate presents е law е"=Ы/п that is well-known for е oscillators 
with the mean field coupling. Here, b is a new constant. Note that between these extremes 
there is а case with k_ =n?3, where е synchronization threshold is constant and does 
not depend оп the number of oscillators. 

We conjecture that the real threshold for complete synchronization follows closely 
фе same law оЁ dependence оп л and k, but with а constant ¢ lower than а which we 

obtained by stabilizing explicitly the individual oscillators. In support of this claim, we 

have determined numerically the thresholds for complete synchronization as functions оЁ 

п for various values of К ап we have fitted а curve оё the form cn?/(8%) to the data, by 
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Fig. 1. Dependence of the synchronization thre- 176.0 
sholds Е° оп the number of oscillators л and оп the 
depth of nearest-neighbor interactionk 1 the ring of 
2k-nearest neighbor coupled Lorenz systems. The 

analytical curves с›?/(%!‹}; (solid lines) for different =1L nearsetnwightor couping 
k fit №е numerical data (small circles) in а least- :.:’20-0 

squares sense. % 62 

c 

letting vary ¢ (Fig. 1). It can be seen that ё 
the deviation of the data from the fitted — ® g;, =4 
curve is very small, indeed. Note that we ¢ 07 

consider only Ше networks of oscillators Е — 
admitting global synchronization with 

increasing coupling. In fact, most known 024 г k=int(n/2) global coupling 
chaotic dynamical systems belong to this 
class of networks. 10 L 2 2] 30 

Number of oscillators л 

3. Auxiliary regular coupling scheme 

Let п5 now consider а regular configuration by adding to the pristine world (with 
the coupling matrix G) ап additional global coupling such ас фе coupling coefficientve 
is added to аП free places ов the matrix G, 0<v<I. In this extended matrix G,, the main 
diagonal elements are such that they preserve vanishing null row-sums. Thus we obtain 
the all-to-all regular coupling configuration with two different coupling strengths ¢ and 
ve. The rigorous bound of global synchronization threshold in the network with the 
extended matrix G, is calculated а5 follows [23]: 

е = (a/n)R (k,n)/[14+v(R(k.n)-1)], “) 

where R (k,n)=(n/(2k))*. 
In the context оё introducing additional small-world connections with sn edges 

added аг random 10 the pristine world, where 5>0 15 rational, е parameter v=2s/(n-1-2k) 

may be considered as the mean frequency of the appearance of shortcuts. The added 

coupling parameter уе may be thought of the averaged coupling strength оЁ the sn 

connections. One can observe аг Ше dependence (4) оЁ the threshold е° оп the mean 

frequency оЁ the shortcuts арреагапсе v has а drastic diminution in the region оё small v 

(see Fig. 2,a). 
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Fig. 2. Dependence ов the synchronization thresholds оп the parameterv in the all-to-all coupled network 

with the coupling matrix G, ( а) and оп the probabilityp оЁ фе shortcut арреагапсе in the blinking model 

( ). The pristine world is а ring of 30 nearest-neighbor coupled Lorenz systems. The time step of 

switchings in the blinking model т=0.1. The analytical curves & '=(a/n)L(0)/[1+v(L(0)-1)] апа 
&=(a/n)L(0)/[1+p(L(0)-1)] fit the data remarkable well. k=1 (1); k=2(2) 
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4. Synchronization in the blinking model 

Let us now return to our blinking model of the small-world shortcut addition with 
the time-dependent connectivity matrix G, . Figure 3 shows the time-varying structure 

оё shortcut connections in the blinking model of 30 coupled oscillators. Here, the pristine 
world 15 а ring оё locally coupled systems (k=1). 

Recall that фе switching time т is fast with respect to the characteristic transient 
time T оЁ е individual oscillator such фаг the parameter ц in Eq. (1) is small. Under this 
assumption, the blinking model becomes a slow-fast system. Thus, applying the 
Averaging Theorem [25] to the slow-fast system (1) with the time dependent coupling 
matrix G, we obtain the system (1) with the averaged graph matrix G, with the 
constant link strengths ¢, ,(f)=pe=const, where р is the probability оё shortcut switchings 
in this blinking model. 

Therefore the synchronization problem within the small-world network with 
blinking on-off shortcuts is reduced by averaging to the network with the constant matrix 
G, that is similar 10 the matrix G,, where the probability р stands for the additional all-to- 
all coupling multiplicative parameter v. 

Hence for this case, the rigorous bound of global synchronization is calculated as 
follows: 

¢ = (ам)1? (0)/1+р(72(0)-1)], © 
where L3(0)=(n/(2k))?. For p=0, the estimate (5) becomes Ше synchronization threshold 
for е pristine world, and for p=1, it gives the synchronization threshold for all-to-all 
coupling. For О<р<1, е dependence (5) оё фе synchronization threshold оп р reveals 
the sharp reduction оЁ Ше synchronization threshold such that the addition оё а few small- 
world connections (р is small) significantly improves е synchronization properties оЁ 
the network (see Fig. 2,5 ). 

Let us now present the effective path length for our blinking model and its 
dependence on the probability p. Recall that for p=0, the threshold (5) becomes the 
threshold (5) for the pristine world. Rewriting the dependence (5) т the form similar to 
Eq. (2), we introduce the effective path length of the blinking model а5 follows: 
L3(p)=L*(0)/(1+p(L*(0)-1)). Therefore the normalized effective path length has the 
following dependence on the probability p: 

=55 4 1=5.6 

Fig. 3. The blinking model of shortcuts connections. Probability of switchings p=0.01, the time step оЁ 
switchings т=0.1 
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L(P)/L(0) = V(1+(n*/(8K)3-1)p) 2. 

This formula clearly manifests the sharp decrease of the effective path length under a 
small increase оё р from 0 т е blinking model. 

5. Conclusions 

A new type of dynamical small-world networks of chaotic cells has been proposed. 
For the first time for such networks with а time-varying coupling configuration, 
mathematically rigorous and tight bounds on the strength of coupling between the cells 
have been established that are necessary to achieve complete synchronization 
independently of the initial conditions. The synchronization thresholds have been 
explicitly linked with the average path length of the coupling graph and with the 
probability p. 

In previous papers on synchronization in small-world networks a fraction of 
shortcuts are chosen at random at the beginning and they remain fixed for the rest of the 
time. In such an approach the synchronization threshold is the mean value of the 
thresholds for all possible shortcut combinations. However, these thresholds strongly 
depend оп е particular choice of the shortcuts such that фе addition оё fixed in time 
small-world links does not necessarily guarantee synchronizability. It was stated in 
[11,12] аг а sufficient amount оё randomly chosen shortcuts will cause total 
synchronization. In other words, there exists a critical value for the probability p for 
which the small-world network, obtained by adding any given shortcuts, will synchronize 
completely. This statement is, in general, incorrect. In fact, the addition оё fixed т time 
small-world links does not necessarily guarantee synchronizability. The addition of links 
filling out ап entire row т the coupling matrix G does produce а tremendous increase оЁ 
connectivity and a sharp reduction of the synchronization threshold. At the same time, the 
addition of coupling coefficients, located in the matrix G as a dense small «spot» and 
forming an all-to-all coupling within a small subgroup, does not reduce substantially the 
synchronization threshold. The latter case is not very likely to happen when there are 
many cells but it has nontheless a nonzero probability for a finite number of cells. 

On the contrary, when е critical probability р is reached in the blinking model, 
then almost surely the system will synchronize. In other words, the set of on-off shortcut 
switching sequences (аг fail to force total synchronization has probability zero. For this 
property to be true, necessarily the switching time т must be much smaller than 7, the 
typical time constant for the individual cell dynamics. In this context, for many technical 
applications and, probably, for the coordinating brain functioning, the blinking effect of 
the shortcut appearance provides more reliable synchronization and global coordinating 
properties than the networks with the small-world but fixed coupling structure. 

Let us end this paper devoted ю Wadim’s anniversary by а somewhat frivolous 
conclusion. In the context оЁ фе blinking model оё а scientific collaborating network, the 
distant short-time connections can be considered ав telephone calls, personal visits to 
friends апа colleagues, etc. The characteristic time оё reswitching т in the blinking model 
is a time interval between these desirable events, T is the time when the network studies a 
particular problem. As we have learned from е above study оё the blinking model, 10 
improve synchronization properties оё the network, the timet оё coordinating phone calls 
and visits should be small with respect to T, but these desirable events should be frequent. 

Consequently, we wish Wadim at the occasion of his 60-th birthday a bright scientific 
future with many short and intensive interactions with his scientific friends to whom we 

belong. 
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УДК 537.86 

СВЯЗАННЫЕ СИСТЕМЫ ТИПА «МИР TECEH»: 
ДИНАМИЧЕСКИЕ МОДЕЛИ И СИНХРОНИЗАЦИЯ 

B.H. Белых, И.В. Белых, Martin J. Hasler 

B работе представлен KpaTKHH обзор  результатов — исследования 
синхронизации взаимосвязанных динамических систем типа «мир тесен» (small- 
world). Предложена новая модель сетей типа «мир тесен» с изменяющейся BO 
времени структурой связи. Показано, что такая структура связи обеспечивает 
более надежную синхронизацию, чем традиционные системы типа «мир тесен» с 
фиксированными связями. Термин «small world» (B прямом русском переводе 
«маленький мир» или, правильней, «мир тесен») относится к связанной CHCTEME, 
состоящей W3 локально связанных элементов и имеющей, в то же время, 
небольшое количество дальних вероятностных связей (shortcuts). Действительно, 
добавление нескольких дальних связей может существенно уменьшить среднее 
характеристическое расстояние между элементами даже очень большой локально 

связанной сети. Эффект типа «мир тесен», обнаруженный впервые социологами 
при исследовании структуры общества, является важной характеристикой многих 
других взаимодействующих CHCTEM, например, таких KaK ансамбли связанных 
нейронов B мозге, компьютерные сети и Интернет, взаимодействующие популяции 
и т.д. В применении K структуре общества это свойство означает, что два любых 
человека в мире связаны между собой через  небольшое — количество 
промежуточных знакомств. Считается, что среднее число звеньев такой цепи 
равно шести. Однако структура таких связей неоднородна, и всегда B обществе 

есть  ключевые люди, обеспечивающие реальное  взаимодействие — между 
различными группами людей. Эта статья нанисана в честь 60-летия нашего друга и 
коллеги, Вадима Семеновича Анищенко, который является именно таким 

ключевым человеком в научном сообществе людей, занимающихся нелинейной 
динамикой. 
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