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THREE SUBPROBLEMS OF GLOBAL MODEL RECONSTRUCTION 
FROM TIME SERIES AND THEIR PECULIARITIES 

T. Dikanev, D. Smirnov, V. Ponomarenko, and B. Bezruchko 

‘We consider three main subproblems оё global reconstruction оё dynamical models 
from time series: selection of dynamical variables, selection оё model function, апа estimation 
of model parameters. Special techniques for their solution are presented. Their applications 
and prospects of the further development of empiric modeling methods are discussed. The 
approaches are illustrated in numerical and acoustic experiments. 

1. Introduction 

A traditional way оё obtaining а mathematical model оё а complex phenomenon 
from the first principles cannot often be realized in practice. Then, experimental data may 
become the main source of information about a system under investigation and problem 
of an empiric model construction may arise. Since observations of real-world processes 
are presenied, аз а rule, а the form ов time series (discrete ordered sequences оЁ 

observable values), the problem is called modeling from time series. It is important in 
physics, meteorology, medicine and physiology, etc. Since 1980s various methods for 
constructing deterministic low-dimensional models in the form of difference equations 
(maps) [1-3] and ordinary differential equations (ODEs) [4-16] have appeared in the 
framework оё nonlinear dynamics. In particular, significant contribution 10 this field has 
been made by V.S. Anishchenko and his team [8-11]. 

In general, @е problem оё modeling from time series can be formulated ав follows. 
* There 15 а system оё опг interest («an object»). 
* One picks out some quantities m,,....,m,, Which characterize the processes 

occurring in е system and which can be measured experimentally (they are called 
observables). 

* A time series of these quantities (i.c. the finite sequence [n(z)}.,", where 

()=, () m,(1),-..m,(1))), t=iAt, At is а sampling interval) 15 measured. 
* It is known that the object possesses а set оЁ properties [P,...,P,}. 
Based оп the time series, it 15 necessary 10 construct а dynamical model capable оЁ 

reproducing this time series and а$ many оё the properties {P,,...,P,} ав possible. Models 

are constructed in the form of differential equations (1) or discrete maps (2): 

ак/а = F(x(1),¢), (6] 
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„ = F(x,.), (2) 

where x=(x,,...,x,)ER? 15 а state vector of the model, Е 15 а smooth function, СЕК” is а 
parameter vector, ¢ is continuous time, п is discrete time. If the function F is expressed 
analytically in terms of elementary functions (in a closed form) for the entire phase space, 
then the model is called global. Further we consider only global models. 

The success оё modeling depends оп several factors. It is exceedingly important 10 
select properly а model structure that involves the choice of dynamical variables х, (that 
is the relations between dynamical variables x, and observables ;) and choice of the 
form of the function F. 

So, the first subproblem of time series modeling is selection of dynamical variables 
and reconstruction of their time courses from the observed time series data. If there are 
too many observables then one should specify a subset of them to be used as model 
variables. ТЁ the number оЁ observables is not sufficient for model construction ог they 
cannot be used directly, then different combinations of available data are employed. Very 
popular methods are sequential derivatives and time delays ([5] апа [6], respectively), 
both оё them rest upon е celebrated Takens’ results and their generalizations [17]. 
However, different ways of obtaining dynamical variables realizations, which are based 
on a priori information about the system under investigation or some peculiarities of its 
dynamics [8], may prove to be more appropriate for modeling. In Section 2 we present a 
technique for the selection of the best set of dynamical variables for modeling, which 
allows simultaneous convenient testing for nonlinearity. 

The second subproblem is 10 specify the form of function Е. Algebraic polynomial 
is а standard recommendation [6], even though often inefficient [13]. To make 
polynomial more feasible different methods for spurious terms detection and exclusion 
were suggested which work well for а special situations [2,14,18-20]. In Section 3 we 
present a new method for spurious terms detection. 

Third subproblem is technological: 10 estimate model parameters ¢ (usually е 
least-squares routine is used). Finally, an obtained model should be validated. But even if 
the model is not sufficiently adequate, model coefficients may have their own value and 
serve for е characterization оЁ the system. In Section 4 we consider such а situation 

where coefficients of a model map describing phase dynamics are used to solve an 
important problem of coupling characterization [21] and suggest extension of the known 
technique for the case of short and noisy time series. 

2. Selection of dynamical variables 

As it has been already mentioned, to construct model equations м the form 

y())=F(x(?)) from а time series {n(z,)}, one forms, first of ай, the series оё state vectors 
(x(z)). Then, the time series оЁ quantities 10 enter е left-hand side оё model equations 
{y(z)} is obtained from the time series {x(z,)] according to the chosen model type: 

® via numerical differentiation оЁ [x(t)] for ODEs, since y(1)= dx(t)/dr 
* via the shift of {x(¢)] along the time axis for discrete maps, since y(z)=x(z,,,). 

Finally, the form of the function F is specified and its parameters are estimated. 
Voluntary dynamical variables selection can make approximation оё the 

dependencies y(x) with а smooth function extremely problematic [22,23] ог even make 
these dependencnes many-valued. Here, we describe the method for assessing suitability 
and convenience оЁ the selected variables x,, for constructing a global dynamical 

model. It is based on testing the time series Iy(t )т and {x(z,)} for single-valuedness апа 
continuity of each dependency y(x) in the entire region of ап observed motion. It 15 
crucial here аг we use local characteristics rather than the averaged ones а5 in [24]. 

166



2.1. Description о] technique. If а dependency y(x) is single-valued and 
continuous in а domain И, then фе difference |y(x)-y(X,)! tends to zero when х-х,!->0 
for each x €V In practice, violation оё this condition may be viewed а5 а sign оЁ many- 

valuedness or discontinuity of the dependency y(x). Since the length of an observable 

time series is finite, the above-mentioned limit cannot, strictly speaking, be found. 
However, it 15 possible to trace а tendency 1 variations оё the quantity y(z,)-y(z)! when 
the vectors x(t,) апа х(:_‚.) are made closer and closer, down to a certain finite distance. 

Given sufficiently large amount of data N, high accuracy of measurements, and low noise 

level, the distance Iix(z)-x(#)ll can be made sufficiently small for each local region оЁ 
observed motion. 

The technique оЁ testing consists in е following (Fig. 1, а). The domain У 

containing the set of vectors {x(t,)},,"0 is partitioned into identical hypercubic boxes оЁ 
the size 8. All boxes containing at least two vectors are selected. Let us denote them 

5,,855.-,5,, The difference between the largest апа е smallest values оЁ у inside а box s, 

is сайей local variation e=max,c y(x)-minc У( x). The largest local variation 

аак аХ o, 6, and its graph ‘….-„‹Ё аге used а5 the main characteristics оё the 
investigated dependency. Suitability оЁ the considered quantities х and у for global 
modeling is assessed using е following considerations [25]. 

+ Ёа dependency y(x) is single-valued апа continuous, ва 15 sufficiently small for 

small & and tends 10 zero for 6-0 (Fig. 1, b, filled circles). The following statement 15 

often correct: the less the slope оё the graphe_(5), the better are the dynamical variables 
for modeling. 
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Fig. 1. (a) Illustration for а technique of testing а dependency у(х) for single-valuedness апа continuity in 

the case D=2. (b) Possible appearance of plots ¢ (8) for different variants of dynamical variables 

+ If a single-valued ап continuous dependency has а region оё very steep slope (a 

«jump»), then ¢, remains rather big even for sufficiently small 6. However, further 

decrease in & leads to decrease 1 е „ and the graph e (8) exhibits а «kink» аг the value 

оё & roughly equal to the size of the steep slope region (e.g., Fig.1,b, white circles). In 

such а case, the dependency y(x) is difficult to approximate with а smooth function. 

* Н ¢ remains large and does not diminish for 8—0 (Fig. 1, b, filled squares) then 

the considered variables are not appropriate for global modeling. Such situation may be 

related both to nonuniqueness of the dependency and high noise level. 

2.2. Numerical example, refinement о] technique апа testing for nonlinearity. 

The above technique was already published and sufficiently illustrated previously [25]. 

Here, ме describe briefly ап approach to refinement оё the technique and its use for 

assessment оё nonlinearity оё а dependence y(x). Besides, we present е application оЁ 

the refined technique (0 the analysis оё а biological time series. 
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The procedure described in Section 2.1 is a technique with a fixed-location set of 
nonoverlapping boxes (independent оё the distribution оЁ data points). It has the 
disadvantage Фаг а vector х lying near а box boundary is never compared to the close 
vectors from the neighboring boxes, but it may be compared to more distant vectors from 
its own box. It can lead to intensive oscillations in the е„ (8) for small & т е presence 
of noise. The nonmonotony makes the assessment of the considered dynamical variables 
more difficult. An example оё such situation is illustrated in Fig. 2, ¢, where the results оЁ 

testing are presented for chaotic regime оЁ the logistic тар x ,,=A-x,? at A=2.0. The 
observable is m,=x +§, where Е, is а sequence оЁ independent identically uniformly 
distributed random values. We test the dependencies corresponding to е first iterate 
M,,1(n,)s to е second one 1,,,(n,), апа to е third one n,,(n,) using the time series 
containing 1000 data points (see Figs 2, a, b for noise-free data). 

The disadvantage of the technique may be obviated by using the set of overlapping 
boxes centered аг е vectors оё the time series (data-dependent location) instead of the 
fixed-location set оЁ boxes. In other words, for each vector x(#)) one should consider all 
its 3-neighbors, i.e. to calculate local variation оё у in е box with the side 28 centered аг 
x(t,). The number оё considered boxes is then equal to the number оЁ vectors М. The 
largest value оё local variation obtained т such а way (let us denote it ва 
monotonically decreases with decrease т 8. This advantage of the modified procedure is 
illustrated in Fig. 2, ¢, а for the above mentioned case оЁ the logistic map. 

Due 10 this advantage, the plot ¢ __‘(8) 15 more reliable апа informative. Note also, 
that the plote__ '(8) 15 а straight line if the system under investigation is linear. Therefore 
the plot e '(8) сап serve as а test for linearity. И5 concavity indicates nonlinearity оё the 
system under investigation (Fig. 2, d). As an example of the proposed techniques 
application 10 а complex real-world system, let us briefly consider testing оё ап acoustic 
time series. This is a digitized recording of the human voice (in fact, air pressure 
variations), which was done when а man was pronouncing е sound [a:]. Sampling 
frequency is 44.1 kHz. The recording length is 10000 data points. A dependence 

© 

Fig. 2. Comparison of testing techniques in а numerical experiment. (а) The first, фе second, and the 
1Ыга iterations оЁ the chaotic logistic map. (b), ( ¢) Results оё testing with the fixed-set-of-boxes technique 
from noise-free and noisy data, respectively. (d) Results оЁ testing with the modified technique from noisy data 

168



Enux 

0.6 

0.4 

0.2 

0.0 

b 
Fig. 3. Testing vocal time series described in Section 2.2. () The fixed-location set оё boxes technique 
indicates many-valuedness. (6) The modified techniques indicates also nonlinearity 

M;.2(M:M,,M,,) 15 tested. We present е plot e, (8) т Fig. 3, а; it does not indicate 
single-valuedness. Other conclusions can hardly be drawn from the figure because of the 
above-mentioned disadvantages of the fixed-location set of boxes technique. The 
modified technique leads to the monotone plote_ '(8) (Fig. 3, b). It 15 easily seen аг the 
dependence е„ '(8) 15 significantly concave аг allow а conclusion about nonlinearity оЁ 
the system under investigation. 

00 01 02 03 04 ё 

3. Detection of spurious polynomial terms 

Choice of the model function F is also very important problem, which comes into 
play after selection of dynamical variables. In the typical case of absence of detailed a 
priori information about proper function form, one usually uses algebraic polynomials 
relying upon many rigorous mathematical results (Weierstrass’theorem). But model with 
polynomials are often inefficient because of their very bad extrapolation properties that 
are determined by the presence of «spurious» terms (basis functions). 

Theoretically, polynomial terms should be regarded as spurious if «true» values of 
their coefficients (coefficients of the «true» function expansion in a power series) are 
equal to zero. Detection with subsequent exclusion оё several spurious terms from the 
model polynomial can lead to significant refinement of the model. But, different 
approaches to detection of spurious terms have been suggested: small absolute values of 
the corresponding coefficients [2], small values оё the coefficients with respect ю their 
standard deviation (Student’s criterion), intensive variation of coefficients around zero 
when different parts оё а transient time series are used for reconstruction [14], slight 
change оё the approximation error when the term is excluded from фе model [19]. Here 
we develop a new (and, in our opinion, more general) approach to detection of spurious 

terms. 

Again, theoretically, rather typical situation is such that neither оЁ terms 15 
spurious. 1Е the true function is, e.g., exponential, its expansion in а power series involves 
nonzero coefficients аг each power оё а variable. In such а situation, when time series 15 

analyzed, adding оЁ each term Ю а model structure would lead ю decrease оЁ the 
approximation error. Nonetheless, some оё е terms are undesirable (practically 
spurious). We state that those terms are practically spurious which affect approximation 
errors only in a narrow domain of the phase space. We conjecture that such terms can be 
detected as those terms whose coefficients depend strongly on the distribution of the data 
points in the phase space. (If all coefficients slightly depend оп the distribution оё data 
points, one may reasonably guess that such model function describe ап object not only for 
фе domain explored by the observed training time series, but also 1 its neighborhood, 
that is the function has good extrapolation properties.) 
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To determine how strongly a coefficient value depends on the distribution of 
training data points, consider its change under variation оё @е weight function p(x,) if 
coefficients values а, are found by minimizing the weighted squared sum of errors 

N M 

=2, p(0)[FO)-Z 0,8, () F- ® 
Here F(x) аге true (observed) values оЁ the approximated function; g,(x,) are basis 

functions (terms). Weight function p(x,) is normalized 10 unity 2’‚.11‚;(›‹‚.):1‚ 
ТЁ the set of basis functions is orthonormal, then coefficient values read 

o= 2 p()F(:)8(x). @ 
Approximated function can be expressed as 

м ю 
Е( = Х, () + F(x), (5) 

where F(f) is approximation error. 
Let us consider now how the values of coefficients will change under slight 

variations of the weight function p—»p’=p+iz. Because of weight function normalization 
the variation satisfies 

N A 
Хр( = 0. (6) 

Impose also the condition оё smallness оЁ variation in е form 

N A 
ТО =, (7) 

The change of coefficient in the linear approximation 15 

М ^ — 

аа, = ® p(x)g, ()F(x). ® 

To estimate е intensity of coefficient variation consider Aa, ав functional оё f) For its 
maximum with supplementary conditions (6) апа (7) we have 

Ay, = () ) - (UN)Z 1, )Е. ©) 
ТЁ we suppose аг аг the beginning е weight function was uniform for аЙ training 

time series points, (аг is p(x)=1/N, then as а consequence оЁ orthogonality of basis 
functions and approximation error, we have 

By, = o5, (8, () F (). (10) 
As а criterion for exclusion (or inclusion) of basis function we can use the ratio 

between the maximum possible change оё coefficient value (10) and фе coefficient value 
itself 

с,= 505 g, COF ). а) 
Formula (11) was derived for orthonormal basis functions. In practice this 16 

usually not the case. However when we decide if the basis function is spurious or not we 
can consider only its projection orthogonal to ай other basis functions g,'(x). After this 
we сап freely use the method described above. We don’t need to calculate this projectionin 
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explicit form. Let F:,(x) be ап error оё approximation т the absence of the k-th basis 
function, then the orthogonal projection оё фе k-th basis function 15 

8 () = (F,) - Е0д)/о,, 12) 
where а;' is coefficient for this projection, calculated with least squares method. 

After substitution of (12) into (11) for coefficient instability we have 

C, = ВЛЕ Fe)PEC) SN F х)- Fe) PG (13) 
Above we talked about exclusion оЁ spurious terms from initially large basis, but 

adding the most suitable functions can also optimize the basis functions set. We can 
choose them using the same methodology, according to minimal value of criterion (13). 

Let us illustrate proposed method оп test example. The realization of х variable 
from Réssler system т chaotic regime is used ав time series. Fig. 4, b shows phase 
trajectory of this system reconstructed with time delay method. Model is constructed in 
the form 

100 

0 20 40 60 100 0 20 40 60 100 
а Number of basis functions e Number of basis functions 

Fig. 4. (а) Comparison оё test part оЁ time series generated by Rossler system in chaotic regime with time 
series generated by optimized model. Good prediction for about 6 quasi-periods is observed. &) Phase 
trajectory of Rossler system reconstructed with delay method from time series о х variable. (c) Phase 
trajectory generated by optimized model. @) Error of approximation of training time series (thin curve) 
and еттог of test time series prediction (bold curve) ав а function оЁ basis functions number, added during 
process of basis functions set optimization with new method. (e) The same as (d) for old method 
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@@ = x,, 

dx,/dt = x;, (14) 

@уа = f(x, x,,x3). 

Н ме transform е Rossler equations into the form (14) ме will have rational 
function f. We will try ю construct the model in universal form using polynomial оЁ the 
6th order ав function 7 The short part оё 200 data points (about 3 quasi-periods) is used 
ав training time series. Let п5 айй to initially empty basis such function for which the 
relative variation оё coefficient (13) 15 minimal. 

In Fig. 4, d the dependencies of training series approximation error (thin curve) 
and error of prediction of test time series (bold curve) on the number of added basis 
functions are shown. Errors are normalized by the standard deviation of the third 
derivative dx,/dt оё training time series. One can see that training series approximation 
error decreases monotonous, while the prediction error for test part of time series has 
minimum when the number of basis functions 18 32 and it is equal ю 0,032 (3.2% оЁ 
standard deviation). At this moment the error оп training series is 0.008. Before 
optimization (when we use full polynomial of the 6th order) the behavior of the model 
was divergent. After optimization the model generates stable trajectories and allows 
prediction оё about 6th quasi-periods оЁ test time series. In Fig. 4, с the phase trajectory 
generated by the model is shown. One can see that the trajectory 15 located in the same 
phase space domain ав the trajectory оё Réssler system, but фе cycle оё period 2 is 
eventually established. 

In Fig. 4, e for comparison purposes the results of optimization of basis functions 
set with previously known method is shown. In this method we add to the basis such 
functions that allows maximal decrease of approximation error. One can see that the 
sequence of adding basis functions is different from proposed method. The best basis 
according Ю test series prediction error includes 33 functions. This best error is 0.034 
(slightly worse than with new method), error of training time series approximation 0.006. 
The behavior оё the optimal (from 15 point оё view) model turns out 10 be divergent. 50 
we can state that in this example new proposed method оё optimization outperforms the 

well-known one. 

4. Determining character of coupling between 
subsystems from time series 

The problem of determining the presence and direction of interaction between two 
subsystems is very important in many fields, including physiology and medicine where 
interaction between human cardio-vascular and respiratory systems [26,27] and between 
different brain areas are of interest [28-30]. Thus, recently Rosenblum and Pikovsky 
suggested a very delicate and nice idea for characterization of weak coupling between 
subsystems from time series by estimating coefficients of a model map [21]. But their 
method works well for the case оЁ very long time series (for «reasonable» noise level, 
time series should contain about 10*...10° data points). In practice, nonstationarity оё 
processes, impossibility to collect sufficient amount оё data, and significant noise often 
require estimation of the interaction (coupling) characteristics under conditions of short 
observation interval. Here, ме develop ап extension of Rosenblum and Pikovsky 
approach to the case оё short” ап noisy time series. For а detailed consideration see [32]. 

* E.g., typical quasi-stationary segments оЁ electroencephalogram (EEG) is about 5 seconds long 
[31]‚ EEGs аге recorded аг typical sampling rate оё 200 Нг. Then, quasi-statiopary segment contains about 
10 ° data points. Roughly speaking, typical length of a short time series in practice 15 оё the order оЁ 10° data 
points. 
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4.1. Evolution map approach. The technique of Rosenblum and Pikovsky is based 
on construction of empiric model maps, describing phase dynamics of the subsystems, 
and 15 called evolution тар approach. Having ап original time series {n, о()^ where 
п п are obsetvables, #=iAt, i=1,...,N, At is а sampling interval, one calculates the time 
realizations of phases (¢, (1)} ала construct а global model map, which characterizes 
the dependence of phase increments (over а time interval tAf) оп the phases оЁ 
subsystems’ oscillations, in the form 

А,2(2) = , (ннтао) - 0,(1) = F (8 5(1).0, ()2, ), (15) 
where т is positive integer; a, 2 аге vectors оё the coefficients оё фе functions Ё 12 F; заге 
trigonometric polynomials: 

Fl(¢l ‘Фі) = 2‚’:; .8 ,'(Ф] чф:)› (16) 

with g,=1; g=cos(mg,+n¢,) Юг even i22; g=sin(mg+n¢,) Юг odd i23; L, is the 
number оё terms оЁ the polynomial F,. For #22, m,=m,,, are nonnegative integer, 
ny=n,,,, are arbitrary integer, апа by definition m,=1, n,=0. 

Using the estimates of coefficients 2‘1 2› obtained from the time series via №е least- 

squares routine, one computes intensities of influence of the second subsystem оп the first 

one (2->1) ¢, а5 

&2 = 12) [} ЛЕ (0y,0,.8,)/00, Pl do, = 2, тга 2. an 
Everything is similar for the influence of the first subsystem оп the second опе (I—2) 32. 

Directionality index 15 defined а5 Ё:(Ё2—Ё1)/(82+81). Since ^с1 220, d takes the values only 

within the interval [-1,1]: @=1 ог @=-1 corresponds 10 unidirectional coupling (1-+2 ог 

2->1, respectively), #=0 for ideally symmetric coupling. 

4.2. Short time series. For very long time series (М->со) the estimates 2’1, 52, and @ 
are unbiased ап have practically no scattering, 1 other words, the method gives correct 
characterization of coupling. However, if the time series is short, the following important 

questions arise. Are the estimates ^с1 2› d biased ог not? How can statistical significance of 
the results be estimated? To illustrate importance оё the questions, let us consider а 
simple demonstrative example, when two subsystems are uncoupled and linear, that is a 
system оЁ difference equations 

А2( = 6, (14270) - ¢, 5(1) = лоа + £, (1), (18) 

where ¢,, are Gaussian random processes independent оЁ each other with variances 
л, „„ Obviously, correct values оЁ coupling should be ¢, =c,=d=0 in this case. 

‘We have carried out numerical experiment in the following way. Time realizations 
of original equations were simulated using the generator of pseudo-random numbers 
realized in the subroutine DRNNOR оё the library IMSL. Initial conditions for each 
realization are random numbers ¢,(0), ¢,(0) distributed uniformly оп the interval [0,2л]. 
We obtained 1000 short time realizations (1000 pairs of scalar time series) with the 

length М Ф=103. The values of estimates Ё, „ and @ аге computed for each оё them. From 
the obtained sets of values we construct histograms. 

The estimates 21 2 апа а арреаг misleading. Their distributions are shown in Fig. 5. 

Thus, т е case оЁ identical subsystems (D,=D, and o,=w,) Acl is always positive and 
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Fig. 5. Histograms ог the estimates оё coupling, constructed ав а result оё processing of 1000 time realiza- 

tions оЁ the equations (16) withw,=w,=1.0 (a), (b) Ё] (а biased estimate) and & for identical subsystems 

with D, =D,=0.4. (c), (d) &, ¢, (exhibit different biases) апа @ (exhibits negative bias) for subsystems 
with different noise levels D,=0.4, D,=0.1. (¢), (7). () апа #) Y.}, апа & (unbiased estimates) for the 
situations corresponding to @L), (b), (g), and (d), respectively 

takes sufficiently large values (Fig. 5, а), ie. it 15 а biased estimate for ¢,=0; ав 

unbiased, but exhibits quite а large scattering; even the values оЁ d=+0.4 are encountered 
quite often (Fig. 5, b). Thus, it is very probable to get spurious indication of the presence 
оЁ interaction from а single realization. The situation becomes even more complicated 
when subsystems are nonidentical. It 15 illustrated т Fig. 5, с, @ for the case D;>D,, 

w,=w,. The estimates 2,2 are biased, bias т Ё\ being greater (Fig. 5, с). This leads to 

biasedness of @ whose values are systemarically less than zero (Fig. 5, @). Hence, 
predominant influence (2—1) is diagnosed, even though coupling 15 absent ш reality. 

4.3. Corrections to evolution map approach and novel unbiased estimates of 
coupling. By careful analytic consideration of the problem we found out the cause of 
biases апа developed corrected estimates of coupling [32]. Novel unbiased estimate of ¢, 
is the quantity 

=62~ b6, 2, (19) Ча 

where 6;,‘ 2 are unbiased estimates of variances ":,,.2- Derivation оё &, 2 15 not trivial. 
Under some simplifying assumptions (noise e, ,(r) are Gaussian, coupling between sub- 
systems and their individual nonlinearities аге very weak) ме obtain the following 

analytic expression for &, % ' 

о;, 2= (20, УМ + 225 (1jke)cos((ma, i, )jfe)e тггг 1, — (20) 

where ЁуЕ 2 аге estimates оЁ noise variances, their derivation is straightforward. 
PN й я Н и 

Normalizéd index d 15 replaced by nonnormalized quantity бес;?- c,%, whose unbiased 

estimator is 8 = -- 

To estimate reliability оё numbers ¥, , and & obtained from а single realization, 

one needs the estimate of variance of }1 (we denote it 358;2)4 After some algebra and 
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experimentation, we derive а semiempiric formula [32] for ;2 in terms оЁ estimates й 
a,; and &; 2 derived earlier, we do not present it here for the sake of brevity. Since ¥ 
has а skewed distribution for low order trigonometric polynomials Р , typically used, we 

take asymmetric expression [y,- ‹3;‘‚ 9‚+р&‚д] а$ а confidence interval for c,%. We found 
constants а and В empirically to provide necessary significance level; 95% confidence 
interval 15 obtained if о:=1.6, В=1.8. Conclusion about е presence of influence (2—>1) 
can be drawn with probability of error 0.025 provided 

v - a&v.‘ >0. (21) 

The degree оё belief сап be adjusted by changing @ (and, hence, confidence interval 
width). 

Conclusion оё predominant direction оё interaction can be drawn after estimation 

of the variance оё 6. Its «good» estimate 15 832=‹^1;‘2+Ёц}. Our experiments show, that 

a=1.6 also provides approximately 95% confidence interval for & in the form $ + ‹18;‚. 
More accurately, the values 

Y,-a0;,>0 and 6-ао; >0 (22) 

allow the statement about influence (1—>2) with probability оё error 0.025 (similarly for 
2-1)). 

Results of application of the proposed estimates :{l о апа $ ю №е above mentioned 

example (17) are presented in Fig. 5, е-й. Systematic errors in :'l „апа $ are absent. Fig. 6 
demonstrates usefulness of the interval estimates Ю ensure reliable conclusions оЁ 
coupling direction. 

0.8 7 0.8 

2 001 L $ —_-— . T FrOn was 0.0 

-08 T T ы T T T '0-8 ¥ T T T | ol д 

0 5 10 15 20 25 0 5 10 15 20 25 

a experiment number b experiment number 

Fig. 6. Estimates of coupling for example (17), results obtained for the first 25 of the 1000 time 

realizations оЁ the subsystems with different noise levels D;=04, D,=0.1. (а) d takes predominantly 

negative values. (b) & (circles) takes negative as well ав positive values, estimated confidence intervals are 
shown as error bars and, as a rule, include zero 

5. Summary 

This paper illustrates some important details оё the procedure of constructing 
mathematical model from a time series. Namely, three main subproblems are selected and 
their peculiarities are shown. Special techniques for better solutions of two оё them are 
proposed: 

* preliminary testing оё time series оё dynamical variables, which provides фе 
variants which are the most suitable for modeling and allows convenient testing оЁ 
experimental dependencies for nonlinearity; 

* а procedure оЁ model structure optimization, which allows elimination оЁ 
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spurious terms from е polynomial model, whereby model performance can be 
significantly refined. 

Finally, we have developed an approach to estimation of intensity and 
directionality of coupling between two subsystems in the case of short and noisy time 
series. Under certain assumptions (nonlinearity of subsystems and coupling between them 
are weak), unbiased estimates of intensity and directionality оё interaction provided with 
confidence intervals are derived. In our opinion, suggested estimates are applicable for 
wide range of real-world processes, including signals of biologic origin when it is 
important to analyze short time series segments due to nonstationarity. 

The work was supported by the RFBR (grant M. 02-02-17578), CRDF (Award 
REC-006), and the Russian Ministry of education. 
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ТРИ ПОДЗАДАЧИ РЕКОНСТРУКЦИИ ГЛОБАЛЬНОЙ МОДЕЛИ 
ПО ВРЕМЕННЫМ РЯДАМ И ИХ ОСОБЕННОСТИ 

Т. Диканев, Д. Смирнов, В. Пономаренко, Б. Безручко 

Мы рассматриваем три основные  подзадачи глобальной реконструкции 
динамических моделей no ВР&МЕШЦ›М РЛДЗМЁ ВЬ]бОр динамических переменных, 

выбор функций модели и определение параметров модели. Представлены 
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специальные методы для их решения. Обсуждаются их приложения и перспективы 
дальнейшего развития методов эмпирического моделирования. Данные подходы 
иллюстрируются в численных и акустических экспериментах. 
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