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OPTIMAL CONTROL OF FLUCTUATIONS APPLIED TO THE SUPPRESSION 
OF NOISE-INDUCED FAILURES OF CHAOS STABILIZATION 

LA. Khovanov, №А. Khovanova апа P.V.E. McClintock 

Double strategy of chaos and fluctuation controls is developed. Noise-induced failures 

in the stabilization of ап unstable orbit in the one-dimensional logistic тар are considered а5 
large fluctuations from a stable state. The properties of the large fluctuations are examined by 
determination and analysis of the optimal path and the optimal fluctuational force 
corresponding 10 the stabilization failure. The problem of controlling noise-induced large 
fluctuations is discussed, and methods of control have been developed. 

Introduction 

The control of chaos represents а very real апа important problem in а wide variety 
оё applications, ranging from neuron assemblies 10 lasers and hydrodynamic systems [1]. 
The procedure used consists of stabilizing an unstable periodic orbit by the application of 
precisely designed small perturbations to a parameter and/or a trajectory of the chaotic 
system. Different methods of chaos control have been suggested and applied in many 
different physical contexts, as well as numerically to model systems [1]. For practical 
applications of these control methods, it is important to understand how noise influences 
the stabilization process, because fluctuations are inherent and inevitably present in 
dissipative systems. The problem has not been well studied. Typically, a method is 
developed for stabilization оЁ the orbit without initially taking any account оЁ 
fluctuations. Only then the authors do check the robustness of their method by 
introducing weak noise into е system [1). Thus, in е celebrated pioneering work оЁ 
Ott, Grebogi and York, «Controlling chaos» [2], the authors just noted that noise can 
induce failures of stabilization. 

In this work we consider noise-induced failures in the stabilization of an unstable 
orbit and the problem of controlling these failures. The method of Ott, Grebogi and Yorke 
(ОСУ) [2] and а modification оё фе adaptive method (ADP) [1] are used to stabilize ап 
unstable point of the logistic map. We consider the small noise limit where stabilization 
failures аге very гаге and therefore they can be considered ав large fluctuations 
(deviations) from a stable state. We study the properties of large deviations by 
determining the optimal paths and the optimal fluctuational forces corresponding to the 
failures. We employ two methods to determine the optimal paths and forces. The first of 
these builds and analyzes the prehistory probability distribution to determine the optimal 
ра апа optimal force [3]. The second method considers ап extended тар (relative 10 фе 
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initial one) which defines fluctuational paths and forces in е zero-noise limit [4,5]. 
Furthermore we use the optimal paths and forces to develop methods of controlling the 
large deviations, i.e. the noise-induced failures оЁ stabilization. In the literature, methods 
for stabilization are often referred to as a control methods too. To differentiate controlling 
large fluctuations from controlling chaos, we therefore use the term «stabilization» to 
indicate the control of chaos. 

In section 1 we describe the procedures for stabilization of an unstable orbit of the 
logistic map. The general approach to the control of a large deviation is presented in 
section 2. Noise-induced failures of stabilization are considered in section 3. The results 
obtained are discussed in the conclusion. 

1.Chaos stabilization 

For simplicity we will stabilize ап unstable fixed point х” оё the logistic map: 

X, =rx(1-x,), (1) 

where x, is а coordinate, п 15 discrete time and r is the control parameter that determines 
different regimes оЁ the map's behavior (1). The coordinate оё фе fixed point x" is 
defined by е condition: x,,,=x,, and consequently its location depends оп the parameter r: 

л1 

© =1-Ш. @) 

We set the parameter r=3.8, a value for which an aperiodic (chaotic) regime is observed 
in (1), апа the point.x" 15 embedded in е chaotic attractor. 

From the range оЁ existing stabilization methods, we chose 10 work with just two: 
the OGY and ADP methods mentioned above. 

To stabilize а fixed point by the OGY method, perturbations Аг are applied 10 the 
parameter r, leading to the map being modified (1) in the following manner: 

ха = (r+ar)x, (1-x,),  Ar, = r(2¢-1)(x-x")/[x"(1-x")]. (3) 

To stabilize а fixed point by the ADP method, perturbations Ax are applied to фе 
map's coordinate, The value of the perturbation Ax is defined by the distance between the 
current system coordinate and the coordinate of the stabilized state: 

лаа = РД1-ж) + Ак A%, = (5,0, @) 
We consider local stabilization procedure. During local stabilization, the 

perturbations Ar and Ах @ег from zero only if the following condition 15 satisfied: 

ке < . (5) 

Here е 15 а small value: ме fixed £=0.01. 1Ё @е condition (5) 15 not satisfied then 
stabilization is absent, i.e. Ar=0 or Ax=0. 

So, stabilization involve modifications of the initial map (1), and thus we use 
another тар in the form (3) ог (4). The fixed point х* is ап attractor оё the new map. 
After the stabilization is switched on, а trajectory оё the тар tends 10 the fixed point х”, 
and subsequently remains there. 

In the presence of noise the trajectory fluctuates in the vicinity of the stabilized 
state, i.e. noise-induced dynamics appears. In addition, noise can induce stabilization 
failures, i.e. breakdown in the condition (5). 

Our aim is to study these noise-induced stabilization failures and analyze the 
problem of how to suppress them. We therefore consider the maps (3) and (4) in the 
presence of additive Gaussian fluctuations: 
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X, = НАк (1-х,) + О  Ar,=r(2x"-1)(x,-x")/[x"(1-x")], (6) 

ха =rx(lx)+Ax +DE, А = (x -x"). (7) 

Here D is the noise intensity; §, 15 а Gaussian random process with zero-average (Е)=0, 5- 
correlation function (§ &, ,)=8(k) апа dispersion (§%)=1. 

2. Control of large fluctuations 

Large fluctuations manifest themselves as large deviations from the stable state of 
the system under the action оё fluctuational forces, Large fluctuations play а key role in 
many phenomena, ranging from mutations in DNA to failures of electrical devices. In 
recent years significant progress has been achieved both in understanding the physical 
nature of large fluctuations and in developing approaches for describing them. The latter 
are based on the concept of optimal paths - the paths along which the system moves 
during large fluctuations. Large fluctuations are very rare events during which the system 
moves from the vicinity of a stable state to a state remote from it, at a distance 
significantly larger than the amplitude of the noise. Such deviations can correspond to a 
transition of the system to another state, or to an excursion along some trajectory away 
from the stable state and then back again. During such deviations the system is moved 
with overwhelming probability along the optimal path under е action оЁ а specific 
(optimal) fluctuational force. The probability of motion along any other (non-optimal) 
path is exponentially smaller. In practice, therefore large fluctuations must оЁ necessity 
оссиг along deterministic trajectories. The problem of controlling large fluctuations can 
thus be reduced to the task of controlling motion along a deterministic trajectory. 
Consequently, the control problem can be solved through application оё the control 
methods developed for deterministic systems [6]. 

Let us consider the-control problem. We will follow the work [7] and consider the 
control оЁ large fluctuations by а weak additive deterministic control force. Weakness 
means here аг the спегву оЁЁ the control force is comparable with е energy 

(dispersion) оё the fluctuations (see [8] for details). In this case, the extremal value оЁ the 
functional R for optimal control, which moves the system from ап initial state х' ю а 
target state х /, takes the form [7]: 

Ваа(х^Е) = SO() £45, AS= (QFYA[E,0y, (&P, ®) 
where E°7 is the optimal fluctuational force фаг induces the transition from х to x/ in 
the absence of the control force; S 15 ап energy оЁ the transition, N, апа N, are the times 
аг which the fluctuational force £ starts and stops, and F 15 а parameter defining е 
energy of the control force. 

The optimal control force « * for the given functional (8) is defined [7] by: 

P = F(2F)2 (S, (& Y 8, OR), ©) 
where x (% 15 the optimal fluctuational path in the absence of the control force. The 
minus sign т the expression (9) decreases the probability оё а transition to the state x/, 
and the plus sign increases the probability. It can be seen аг the optimal control force 
и 15 completely defined by the optimal fluctuational force £, and the optimal 
fluctuational path x (%%, corresponds 10 the large fluctuation. Therefore to solve the 
control problem it is necessary, first, to determine е optimal path х 09® leading from 
the state х  to the state х / under the action of the optimal fluctuational force &° Thus, а 
solution of the control problem depends on the existence of an optimal path: it is obvious 
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that the approach described should be straightforward to apply, provided that the optimal 
path exists and is unique. 

We consider below ап application оЁ the approach described 10 suppress large 

fluctuations ш фе one-dimensional map. The large fluctuations in question are 
considered here 10 correspond to failures in е stabilization оё ап unstable orbit. 

The control procedure depends on the determination of the optimal path and 
optimal fluctuational force and, to define them, we will use two different methods. The 

first method is based on an analysis of the prehistory probability distribution (PPD) and 
the second one consists of solving a boundary problem for an extended map which 
defines fluctuational trajectories. 

The PPD was introduced in [3] to analyze optimal paths experimentally in flow 
systems. We will use the distribution 10 analyze fluctuational paths in maps. Note, that т 
[9,10] it was shown that analysis of the PPD allows one ю determine both фе optimal 
path and the optimal fluctuational force. The essence of this first method consists of a 
determination of the fluctuational trajectories corresponding to large fluctuations for 
extremely small (but finite) noise intensity, followed by a statistical analysis of the 
trajectories. In this experimental method the behaviour of the dynamical variables x, and 
of the random force §, are tracked continuously until the system makes its transition "from 
ап initial state х ° Ю а small vicinity of the target state х /. Escape trajectories x,° 
reaching this state, and the corresponding noise realizations € °° оЁ the same duration, are 
then stored. The system is then reset to the initial state ¥/ and the procedure is repeated. 
Thus, ап ensemble оё trajectories is collected and then the fluctuational PPD p " is 
constructed for the time interval during which the system is monitored. This distribution 
contains all information about the temporal evolution of the system immediately before 
the trajectory arrives аё the final state х /. The existence оё ап optimal escape path is 
diagnosed by the form оё the PPD p /: if there 15 ап optimal escape trajectory, еп the 
distribution p " аса given time л has а sharp peak at optimal trajectory х° Therefore, (0 
find ап optimal path it is necessary to build the PPD and, for each moment оё time л, 10 
check for the presence of a distinct narrow peak in the PPD. The width of the peak 
defines the dispersion o," оё the distribution and it has 10 be оё the order of the mean- 
square noise amplitude b [3]. The optimal fluctuational force that moves the system 
trajectory along the optimal path can be estimated by averaging the corresponding noise 
realizations & &* over the ensemble. Note, that investigation оЁ the fluctuational prehistory 
also allows us to determine the range of system parameters for which optimal paths exist. 

To determine the optimal path and force by means of the second method we 
analyze extended maps [4,5] using the principle оё least action [5]. Such extended maps 
are analogous to е Hamilton-Jacobi equation in the theory оё large fluctuations for flow 
systems. For the one-dimensional тар x, ,,=f(x,)+DE,, the corresponding extended тар 
in the zero-noise limit takes the form: 

ха =flx,) +7,/8(x,), 

Y = /Е( (10) 

&) = 9f (x,)/ox, . 

The тар 15 area-preserving, апа it defines the dynamics оё the noise-free тар х„ =f(x, ), 
if y,=0. If y#0 then the coordinate x, corresponds ю а fluctuational path, ала the 
coordinate , to а fluctuational force. Stable and unstable states of the initial map become 
saddle states of the extended map. So, the fixed point x* оё the ADP (7) апа OGY (6) 
maps becomes а saddle point оЁ the corresponding extended map. Fluctuational 
trajectories (including the optimal one) starting from х° belong 10 unstable manifolds оЁ 
the fixed point (x",0) оЁ the extended map. 
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The procedure for determination of the optimal paths consists of solving the 
boundary problem for the extended map (10): 

хх , Y= (11) 

х„ =xf, y =0, (12) 

where л" 15 the initial state апа х / 15 а target state. 
To solve the boundary problem different methods сап be used. For the one- 

dimensional maps under consideration, a simple shooting method is enough [11]. We 
choose an initial perturbation / along the linearized unstable manifolds in a vicinity of the 
point (x,0) оё the тар (10). The procedure 10 determine а solution can be аз follows: 
looking over all possible values /, we determine a trajectory which tends to the point 
(x7,0). Note а!, because these maps are irreversible there exits, in general, ап infinite 
number of solutions of the boundary problem. The optimal trajectory (path) has minimal 

action (energy) S=2,;y”1; here y, is calculated along the trajectory, corresponding а 

solution of the boundary task. 

3. Noise-induced failures in stabilization 

A breakdown of the condition (5) corresponds to а failure оё stabilization, i.. 10 
the noise-induced escape оЁ the trajectory from ап e-vicinity оё е fixed point x*. The 
target state х / corresponds to the boundaries оЁ the stabilization region: x/=x"+e. 

Instead о analyzing the maps (6) апа (7) in the e-vicinity оЁ the fixed point х° ме 
can investigate linearized maps of the following form: (path) has minimal 

ха = ax, + DE,, (13) 
here а is а value of derivative df{x )/dx, т the fixed point л'. For the тар (6) the 
derivative is equal 10 zero a,,=0, and for the тар (7) а op=-0.8. 

Let us investigate stabilization failure by considering the most probable (optimal) 
fluctuational paths, which lead from е point х* to boundaries x"+e. For linearized maps 
(13) the extended map (10) can be reduced to the form: 

X, =ах, + y,/a, 

(14) 
Эн = )/а 

with the initial condition (x,=x", y;=0) апа фе final condition х /=х"+в. It can be seen 
that а solution of the тар (14) increases proportionally 10 y,=const/a” [12]. This means 
that, for the ADP тар (7), the amplitude оё the fluctuational force increases slowly but 
that, for the OGY тар (6), the failure arises аз the result оё only one fluctuation 
(iteration). Because equation (14) is linear, the boundary problem will have а unique 
solution [11]. Thus, analysis of the linearized extended map (14) shows that there is an 
optimal path, апа it gives а qualitative picture оё exit through the boundary x"+e. 

Let us check the existence of the optimal paths through an analysis of the 
prehistory of fluctuations. To obtain exit trajectories and noise realizations we use the 
following procedure. At the initial moment of time, a trajectory of the map is located at 
point x". The subsequent behaviour оё the trajectory 18 monitored until the moment аг 
which it exits from е e-region of the point x*. The relevant parts of the trajectory, just 
before and after its exit, are stored. The time at which the exit occurs is set to zero. Thus 

ensembles of exit trajectories and оё е corresponding noise realizations are collected 
and PPDs are built. 
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Fig. 1. PPDs p," оё the exit trajectories (a) апа noise realizations (b) о! ADP тар for the boundary @"-e). 

The thick dashed lines indicate e-region of stabilization. The thin dashed lines connect maxima оё PPDs. 

The noise indensity is D=0.0011 

To start with, we will discuss these ideas in the context of the ADP map. Fig. 1,а 

shows PPDs of the escape trajectories of the ADP map, and the corresponding noise 

realizations for the exit through the boundary (x"-¢) are shown 1 Fig. 1, b. The picture of 

exit through the other boundary (x'+¢) is symmetrical, so we present results for one 

boundary only. It is evident (Fig. 1) Фаг there is the only one exit path. Note, that е 

path to the boundary (х" - е) is approximately 2.8 more probable than the path to the 

boundary (x"+¢). This difference arises from ап asymmetry of the map in respect оЁ the 

boundaries. 
Because for each boundary there is the only one exit path, the optimal path апа the 

optimal fluctuational force can be determined by simple averaging of escape trajectories 

and noise realizations respectively. In Fig. 2 the optimal exit paths and the optimal 

fluctuational forces are shown for the boundaries (х*-е) and (x*+¢). The paths and the 

forces coincide with а solution оё the boundary problem (circles in the Fig. 2) оЁ the 

extended linear тар (14). As сап be seen the optimal ра is long, and the amplitude of the 

fluctuational force increases slowly, in agreement with analysis оё the linearized тар (14). 

The optimal fluctuational force obtained (Fig. 2, b) must correspond [10] ю the 

energy-optimal deterministic Фогсе that induced е stabilization failure. We have 

<„ [ 

0.04 [На 

0.0 № 

Fig. 2. The optimal paths (@) and the optimal forces (b) ог exit through the boundary @&-е) (solid line) 

and the boundary (r'+&) (dashed line) for ADP map. Circles indicate е optimal paths and forces 

obtained by solving the boundary problem for the lincarized extended тар (14). The optimal paths and 

forces used in е control procedure аге marked by arrows 
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checked this prediction and found Фаг the optimal force induces the exit from ап e-region 
оё the point х we selected ал initial condition а! the point x* апа included фе optimal 
fluctuational force additively; аз а result ме observed the stabilization failure. If we 
decrease the amplitude оё е force by 5-10%, then the failure does not оссиг. It appears, 
therefore, the deduced force allows us to induce the stabilization failure with minimal 
energy (see [10] for details). 

Using the optimal ра and the force we can solve the opposite task [7,8] - 10 
decrease the probability of the stabilization failures. Indeed, if during the motion along 
the optimal path we will apply a control force with the same amplitude but with the 
opposite sign а5 the optimal fluctuationai force has, then, obviously, the failure will not 
occur. Because we know the optimal force then, in accordance with the algorithm [7] 
described above, it is necessary to determine the time moment when system is moving 
along е optimal path. For the ADP method the optimal path 15 long enough to identify 
that а trajectory 15 moving along the optimal path, ап then to apply а control force. 

In the presence of control the map (7) is modified: 

X, = 1%,(1-x,) + Ах, + DE +u,, 
(15) 

Ax, = (x,-x"), 

here u_ is the deterministic control force. 
We use the following scheme 10 suppress the stabilization failures. Initially the 

control force is equal to zero (u,=0) and е тар is located т the point х*; ме 
continuously monitor a trajectory of the map (15) and define the time moment when the 
system starts motion along the optimal path (x ). We assume (аг е system moves along 
the optimal path (x,) if it passes within а small vicinity of the coordinate (x ,) апа then 
within а small vicinity оЁ (x „) (see arrows in Fig. 2, а). Then оп the following iteration 
we ада the control force u,=-sign(g,)(g,), n=-1 (see Fig. 2, b). 

In Fig. 3, а dependences of the mean time ( т) between the failures оп фе noise 
intensity D are plotted in the absence, and in the presence, of the control procedure. It is 
clear that the mean time (t) is substantially increased by е addition оё фе control, i.e. 
stability in the face of fluctuations is significantly improved by the addition of the control 
scheme. The efficiency of the control procedure depends exponentially [7] оп the amplitude 
оё the control force (Fig. 3, b), and there is ап optimal value оё е control force, which 15 
very close 10 the value (arrow in Fig. 3, b) оё the optimal fluctuational force. 

o > ЕЕЕ 560850500 
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Fig. 3. (а) The dependences оё mean time (т between stabilization failures оп noise intensityD 10 the 
absence (circles) and in the presence (crosses) оЁ the control. The size of Ше stabilization region 15 
е=0.01. (b) The dependence of the mean time (t) оп the amplitude of the control force и 15 presented for 
the ADP method. The value of (х) corresponding to the optimal fluctuational force is marked by the arrow 
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Fig. 4. For фе OGY map, the optimal ра (a) and the optimal force () are shown for exit through фе 
boundary (x"-e) (crosses) апа the boundary (х`+е) (circles) 

Now consider noise-induced stabilization failures for OGY map (6). An analysis of 
the linearized map has shown that the failure occurs as the result of a single fluctuation. 
We have checked the conclusion by an analysis of the fluctuational trajectories of the 
map (6), much as we did for the ADP map. The optimal path and optimal force are shown 
in Fig. 4 for both boundaries, (х*+е) апа (х*-е). An exit occurs during one iteration and 
there is no a prehistory before this iteration. It means that we cannot determine the 
moment at which the large fluctuation starts and, consequently, Фаг we cannot control the 
stabilization failures. The existence оЁ а long prehistory is thus а key requirement т the 
control the large fluctuations. 

Conclusion 

We have considered noise-induced failures in the stabilization of ап unstable orbit, 

and the problem of how to control such failures. In our investigations, they correspond to 
large deviations from stable points. We have shown that noise-induced failures can be 
analyzed effectively in terms of linearized noisy maps. 

Large noise-induced deviations from the fixed point in one-dimensional maps have 
been analyzed within the framework of the theory of large fluctuations. The key point of 
our consideration is that the dynamics оЁ the optimal path, and the optimal fluctuational 
force, correspond directly to stabilization failures. We have applied two approaches - 
experimental analysis of the prehistory probability distribution and the solution of the 
boundary problem for extended maps - to determine the optimal path and the optimal 
fluctuational force, and we have compared their results. The two approaches give the 
same results. 

A procedure for the control of large fluctuations in one-dimensional maps has been 
demonstrated. It is based on the control concept developed in [7] for continuous systems. 
We have introduced ап additional control scheme which significantly improves the 
stabilization of an unstable orbit in the presence of noise. It was successful for the ADP 
method of stabilization, and problematic for the OGY method. We have shown that the 
control procedure has limitations connected with the presence of long time prehistory of 
large fluctuation. 

Our consideration of фе control problem is relevant 10 а continuous system which 
has а one-dimensional curve in its Poincaré section, e.g. Ше Réssler system. For such 
systems we can formulate the control task as that of control at discrete moments of time 
(the moments of intersection оё the Poincaré section) by using impulsive forces. The 
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intervals between these moments were used to calculate and to form the necessary control 
force. Note (аг а similar approach is widely used in control technology. 

The main limitation of our present control approach lies in the necessity of 
studying the fluctuational dynamics of a given system prior to consideration of its control. 
Such a study can be carried out by use of an extended map of the system, if model 
equations are known, and/or experimentally by analysis of the fluctuational prehistory 
distribution. A system model can be easily written down by determination оЁ the eigenvalue 
of a stabilized unstable point: there are many effective methods of doing so [13]. 

We thank D.G. Luchinsky and V. Smelyansky for useful and stimulating 
discussions and help. The research was supported by the Engineering and Physical 
Sciences Research Council (UK) and INTAS (grant 01-867). 
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ОПТИМАЛЬНЫЙ КОНТРОЛЬ ФЛУКТУАЦИЙ B ПРИМЕНЕНИИ 
К ПОДАВЛЕНИЮ ИНДУЦИРОВАННЫХ ШУМОМ НАРУШЕНИЙ 

СТАБИЛИЗАЦИИ ХАОСА 

И.А. Хованов, Н.А. Хованова, P.V.E. McClintock 

Разрабатывается двойная стратегия управления хаосом и флуктуациями. 
Индуцированные шумом нарушения стабилизации неустойчивых орбит в одно- 
мерном логистическом отображении рассматриваются как большие флуктуации 
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от устойчивого состояния. Свойства больших флуктуаций проверяются путем 
определения и анализа оптимального пути и оптимального флуктуационного 
воздействия, соответствующего нарушению стабилизации. Обсуждается проблема 
управления индуцированных шумом больших флуктуаций, и разрабатываются 
методы управления. 
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