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NOISY NEURAL RHYTHM GENERATORS 

Е. Mosekilde, О.М. Sosnovtseva, D. Postnov, Н.А. Braun, апа M.T. Huber 

The dynamical features of spike train generation in the presence of noise are 
investigated for three different models of neural rhythm generators: а single neuron model 
that simulates impulse pattern modulation for temperature encoding in mammalian cold 
receptors, а minimal пепга! network аг describes transitions between beta and gamma 
rthythms in е brain and ап electronic switching device that represents а simple breathing 
rhythm generator for а snail. We show Фаг noise can explain а number оё peculiarities in the 
observed spike trains, cause coherent switchings between different states, and induce new 
rhythms in small neural ensembles. 

1. Introduction 

Noise can introduce multivarious effects especially in nonlinear апа chaotic 
systems and makes the dynamics of such systems still more difficult to understand. 
Vadim S. Anishchenko, together with his group, has made major contributions towards a 
better understanding оё nonlinear ап chaotic systems under the influence оё noise [1,2]. 
Such approaches can become of particular value for the understanding of pattern 
generation in neuronal systems because neurons are inherently nonlinear, often chaotic 
and inevitably contaminated with noise. 

The spatiotemporal characteristics of neural firing patterns in connection with brain 
function have received considerable interest, and many studies have been performed in 
order to understand the origin and role of various forms of synchronized neural activity 
(e.g., [3.4]). Even single functional units demonstrate flexible neuronal patterns, and 
experimental recordings of peripheral sensory receptors and central neurons show more 
ог less continuous transitions between different types оё oscillatory patterns а$ а function 
of physiologically relevant stimuli [5,6]. In accordance with experimental observations on 
mammalian cold receptors, the Huber/Braun model [7], for example, reproduces tonic 
activities ог bursting discharges due 10 slow oscillation cycles each triggering а group оЁ 
impulses during its suprathreshold phase. Moreover, there exist irregular patterns оЁ 
apparently chaotic origin [8,9] while other patterns that can be explained only with 
essential contributions of noise are typical for thermosensitive neurons [6]. 

The complex and multifarious effects of noise оп neural firing have not уег been 
fully understood. Neural activity is known to be noisy [10], and йв stochastic feature is 
observed during both information transmission and spontaneous firing. At the same time, 
noise can play a constructive role in neural systems. In the presence of a subthreshold 

signal, the excitation threshold may be crossed when пойзе is superimposed onto the 
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signal. This happens with high probability when the signal has its maximum and, hence, 
allows the biological system to detect signals that without noise would remain 

subthreshold [11,12], demonstrating Ше effect оё stochastic resonance [13]. An excitable 
neuronal system сап exhibit the related phenomenon оё coherence resonance [14]. In this 

case, there 18 no underlying periodic signal, апа the resonance phenomenon is controlled 

by the noise intensity and the time оё relaxation. Stochastic synchronization phenomena, 

i.e., the synchronization оё noise-activated ог noise-induced rhythms, have been studied 

in electrosensitive cells оё the paddlefish by Neiman ег al. [15]. Different types оЁ noisy 
phase-locked regimes were observed. 

Many neural systems can perform oscillations т different modes. Hence, the 

interesting questions arise: How is Ше dynamics оЁ neural firing with multimode behavior 

affected by noise, and under what conditions can noise activate new rhythms? In this 

paper we focus on the following aspects: 
(i) how can the presence of noise interfere with the spike generating mechanisms 

and the subthreshold oscillations in peripheral pattern generators, and under what 

conditions can it completely change the spiking pattern? The intrinsic dynamics is 

characterized by oscillatory changes in е membrane potential Фаг are below ог close 10 

е spike threshold. In this situation naturally occurring stochastic influences due 10 

membrane or synaptic noise can be an essential component in signal encoding. The 

reason is that the noise actually determines whether a spike is triggered during an 

oscillatory cycle ог not. Hence, mixed patterns typically result, consisting оЁ random 

sequences of spike-triggering and subthreshold oscillations; 
(Н) how is е switching process between coexisting rhythmic activities т the 

brain influenced by noise? Brain oscillations are normally divided into different types 
based mainly оп their frequency. Rhythms in the В (12-30 Hz) and the у (30-80 Hz) 
ranges are found in many parts of the nervous system and are associated with attention, 
perception and cognition. Recently Kopell ег al. [16] demonstrated that а model including 
both inhibitory interneurons and excitatory pyramidal cells can produce В ав well а$ y 
oscillations that employ different dynamical mechanisms to synchronize. The В mode is 
able to synchronize with long conduction delays corresponding to signals traveling over a 
significant distance in the brain. Similar distances can not be tolerated by the у rhythms 
that are used more for local communication. It has been noted in electroencephalogram 
signals that rhythms of different frequencies can be found simultaneously [17]. In this 
connection we describe noise-induced activities in terms of regularized switching events; 

(iii) how can noise control е appearance оё additional time scales in small neuron 
ensembles? In contrast to previous studies we investigate noise-induced rather than 
noise-activated oscillatory modes, i.e., we focus on time scales that are produced and 

controlled by noise and Фаг 40 not exist м the deterministic case. We provide 
experimental observation of such multimode behavior and investigate the conditions for 
generation and entrainment of the various modes. 

2. Tuning cold-receptor discharges 

2.1. The Huber/Braun model. Mammalian cold receptors are particularly 
interesting in connection with the present analysis, both because of the complicated 
impulse patterns that they generate and because of the clear influence of noise. The 
impulse patterns are generally characterized by regular and relatively frequent burst 
discharges at intermediate temperatures with irregular and less frequent bursting patterns 
occurring at lower temperatures and irregular single spike discharges observed at higher 
temperatures. The stationary frequency vs temperature characteristic typically displays a 
maximum at intermediate temperatures (25-30°C). This lack of monotonicity implies that 
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the temperature encoding must be associated with the firing pattern as such and not only 
with the average firing rate. The Huber/Braun model of mammalian cold receptor was 
described in detail in Refs [7,18]. In brief, it consists of two interacting minimal sets оЁ 
ionic conductances, each including simplified de- and repolarizing Hodgkin-Huxley-type 
currents with sigmoidal steady state activation kinetics. For simplicity, inactivation is 
neglected. The two sets operate at different voltage levels and time scales. High 
threshold, fast activating currents are for spike generation (marked by indices d and r); 
low threshold, slow activating currents generate subthreshold potential oscillations 
(indices за and sr). Including а leakage current /, and the applied current Г,р the 
membrane potential V is given by: 

су=-/, A Ly L ор @ 

with ¢ denoting the membrane capacitance. In our generalized approach we do not refer 
to specific ionic currents but to the de- and repolarizing components of the two 
subsystems, the spike generator and the subthreshold oscillator. 7, is the fast depolarizing 
current and /, is the fast repolarizing current which reflect the classical Na*- апа К*- 
currents in the spike generation. The physiological basis for the two other currents,/ , and 
I, may be different in different neurons. 

The leakage current is given by 

I,=8(V-E) @ 
and the voltage-dependent ionic currents are expressed in the form: 

I;=pg;q,(V-E), ©) 

а„ = М(нехр(5; (V-V,))), (4) 

a,=o(a -a). (5) 

with i=d, r, sd, and sr. Here, Е, аге the equilibrium potentials, g, the maximum 
conductances аг е reference temperature Т, and а, the voltage and time-dependent 
activation parameters. р allows for the temperature scaling оё the ionic currents. У, ап 5, 
are half-activation potentials and slopes, respectively, оЁ the steady state activation 
curves. 

Exceptions 10 е above formulations are the assumed instantaneous activation оЁ 

the fast depolarizing current 
a,=a,, (6) 

and фе direct coupling of the slow repolarizing current to Ше slow depolarizing current: 

a= ф(т]!м— Ка„)/т„. ™) 

Here, 1) denotes е coupling constant апа & 15 а relaxation factor. 
The temperature dependences are expressed in terms of the scaling parameters p 

and ¢ for the maximum conductances and the time constants, respectively: 

p=130T08, = 3,00Tom, ® 

Here, T is №е temperature аг which the receptor cells operate, Т0=25°С 15 the reference 

temperature, and A=10°C is а scaling temperature. Each time T increases by A, the 

maximum conductance increases by а factor 1.3 апа фе time constants by а factor 3. 
То account for the effect оЁ random dynamics we have applied Gaussian white 

noise according to the Fox-Mueller algorithm [19]: 
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&„ = (-4Dhlna)'?cos2nb (9) 

with а апа b being random numbers between 0 and 1; / denotes the integration step, ап 
the noise intensity is adjusted by the dimensionless parameter D. The noise is directly 

added to the membrane potential. 
With the above simple temperature scaling and with noise implemented in the 

model equations, the full variety of experimentally observed impulse pattern evolves 
almost naturally. Increasing the temperature speeds up the ionic kinetics and leads to a 
faster dynamics of the subthreshold oscillator. This is associated with a decrease in the 
number оё spikes (аг can be triggered per oscillation cycle. 

2.2. Role of noise in pattern formation. Fig. 1 reproduces some of the most 
characteristic patterns from experimental recordings for rat cold receptors [7] for direct 
comparison with the results of our modelling studies which are shown in the traces below. 
It can be seen that the model almost perfectly mimics all types of cold receptor 
discharges, but it also becomes evident that at least one type of pattern can be simulated 
only with the addition of noise. This is the pattern that consists of a mix of spike- 
generating and subthreshold oscillations (skippings) that typically occurs in the upper 
temperature range and can be seen in both experimental and modelling data (35°C, left 
diagrams) but not in the lowest diagram which is from a completely deterministic 
simulation (D=0). In this situation only the presence of noise allows the subthreshold 
oscillations 10 randomly exceed е threshold for spike-generation. 

The second row shows the tonic firing patterns that typically can be seen in 
experimental recordings at normal skin temperatures around 30°C and which also occur 
in опг simulations with the appropriate temperature scaling. Noise does not seem 10 have 
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Fig. 1. Typical impulse patterns for cold receptors at different temperatures. Comparison оё experimentally 
recorded spike trains (upper traces) and modelling results from deterministic simulations (D=0, lowest 
traces) and with addition оё noise ( D=0.05 апа D=0.5, intermediate traces). The parameters оЁ the 
numerical simulations are given in Ref. [20] й 
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major influence оп the pattern generation. There 15 а regular tonic discharge because each 
oscillation cycle succeeds to trigger a spike - with a single exception: at D=0.5 one of the 
oscillation cycles obviously fails to produce а spike. The upper trace indicates that а 
similar phenomenon may occur in the experimental recordings: a spike is missing within 
ап otherwise regular tonic discharge. (Note а! е simulation for D=0.5 and Т=30°С has 
been shifted along the time axis for the missing spike to occur at the same time as the 
spike т the experimental sequence.) Although the missing spikes represent singular 
events, their occurrence suggests that noise cannot only induce spiking in otherwise 
completely subthreshold oscillations (as shown in the left traces) but can also prevent 
impulse generation in otherwise regularly spiking sequences. Such situations can cover a 
broad range of stimulus encodings. 

In the third row of the figure we are comparing electrophysiological recordings and 
model simulations оё different noise levels in the range оё bursting discharges. More 
random input simply seems to induce more random fluctuations of spike-generation 
without any qualitative change of the pattern. This appears to also be the case at the 
lowest temperatures where е experimental recordings often exhibit irregular tonic 
discharges. The deterministic simulations generate completely regular discharges and the 
addition of noise is needed to produce the more realistically appearing irregular spike 
sequences. 

With the addition of noise the model successfully reproduces the major types of 
experimentally recorded impulse patterns and it explains how these patterns can be 
related to the resonance behavior between slow subthreshold oscillations and spike 
generating mechanisms. The Huber/Braun is valuable not only because it successfully 
simulates stationary cold receptor discharges, but also as a generalized neuronal pattern 
generator of significant flexibility. 

3. Transitions between  and y rhythms 

3.1. The Kopell model. Та а neural system, the individual neuron is generally 
located in an excitatory or inhibitory network that provides a variety of inputs to the 
neuron, primarily via the synaptic currents. In the present section we consider а minimal 
model for а neural network capable оё producing both В and у oscillations. Developed by 
Kopell et al. [16], the model includes two excitatory pyramidal neurons and one 
inhibitory interneuron. The network 
architecture is illustrated т Fig. 2 where 
open and filled arrowheads represent 
excitatory and inhibitory connections, 
respectively. Solid lines indicate fixed 
connections, and dotted lines represent 
connections that are varied during the 
simulations. By contrast Ю the single 
neuron considered in Sec. 2, the interesting 

features оЁ the present system are 
connected with е interaction оЁ @е 
different neurons. Many factors contribute 
to making the environment of the network 

В, Fig. 2. Architecture оё the Kopell oscillatory net- 
noisy. All of these factors are regarded as - B work. Е1 and Е2 are excitatory cells, and I3 is ап 

random external fluctuations. As we have 
seen in the previous section it is likely that 
neurons can use such external fluctuations 

ю process their input signals more 

inhibitory cell. Open and filled arrowheads represent 
excitatory and inhibitory connections, respectively. 

Solid lines indicate fixed connections, and dotted 
lines represent synapses whose efficacies are varied 
in the simulations 
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effectively. Here, we shall see how е presence оё noise can generate transitions between 
different rhythmic modes in е network. 

The Kopell model is based on Hodgkin-Huxley type neurons [21] which are 
modelled in accordance with the original formulation (rather than the simplified form 

used in the Huber/Braun model). There are no currents for subthreshold oscillations. 

Instead, there is ап additional slow potassium current that accounts for after- 

hyperpolarization (ahp) in the excitatory neurons. The voltage оЁ ап excitatory neuron 15 

controlled by the following differential equation: 

ей = -g(V-E) - gh(V-E,,) - 8¢ n*(V-Ey) ст 

; - 
‘gnl.pW(V'Ex) it 

One recognizes the leak current g,(V-E,), the sodium current g, m*h(V-E, ), the 

potassium current ggn*(V-E,), and @е additional potassium current for after- 

hyperpolarization g,, w(V-Ey). There is а150 а synaptic current input г°„ and а term for 

external current appfication #‘г У is the membrane potential, Ё, (j=Na ог К) is the 

Nernst (ог reversal) potentiafs for the respective 1005, and g, the corresponding 

conductances; с is е membrane capacitance. 
The gating variables are assumed to obey the standard dynamical equations: 

п =a,(V)(1-m) -8, (V)m, 1) 

=0, (V)(1-h)-B,(V)h, (12) 

п=о,(И)(1-п) - B,(V)n, (13) 

» = о, (V)(1-w) - B (V)w, (14) 

where Ше o and В - functions describe the voltage-dependent opening and closing rates 

for the various channels. For each excitatory neuron, а single equation controls the state 

of the synapses going from this neuron to others: 

КЕЕ aJ'(V)(l-:e) -B,s. (15) 

Synaptic input to ап excitatory neuron (here, E1) results in а current 

(et = 8eSem2(V-E) + 8,5,5(V-E). (16) 

In this expression, the s-variables refer to the presynaptic neurons (E2 and I3, 
respectively), whereas е voltage V refers Ю the postsynaptic neuron (Е1). Е, апа Е, 
denote е reversal potentials associated with excitatory and inhibitory synapses. A 
similar equation is used for the synaptic current of E2. 

The inhibitory neuron 13 is very similar 10 Е1 and E2, only the after-hyperpo- 
larization-current is not included: 

(17) 
Noting аг w does пог appear, the remaining gating variables for the inhibitory neuron I3 
are controlled by Вдз (11-13). 

Inhibitory synapscs аге governed by the equation: 

SIi = axi(v)(l-si) = В:'_:‘.. (18) 

eV = -&(У-Е) - gyn*h(V-Ey) - Вк (УЕ -з +i, 
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The inhibitory neuron receives inputs from Е1 апа Е2 аз well ав from а mechanism оё 
self-inhibition: ‚ 

мз = (8.8.51%8.5.:)(V-E,) + 8; 8,15(V-E). (19) 

The detailed description оё @е various functions and parameter values can be found in 
the original рарег [16]. Two parameters are varied in the present study: г„ the strength оЁ 
the connections between Е1 and E2, and g, the maximal conductance for е slow 
potassium ion channels. 

The Kopell model demonstrates three main network modes. 
* For low values оё the two parameters, the three neurons spike in synchrony with а 

frequency ш the у band; 
* If g, is increased, the Е1 and Е2 neurons start to miss every other spike, 

lowering their individual frequencies into the В band. However, since Е1 and Е2 are out 
of phase, the population of excitatory neurons as a whole continues to produce y 
oscillations; 

* Increasing the connection strengths between Е1 and Е2 makes the excitatory 
neurons spike simultaneously, thereby producing В oscillations. 

The results of scanning over a two- 
dimensional parameter space are shown in mfi;’c",‘;z В et & 
Fig. 3. Here, one can distinguish four to 15— 
five different oscillatory modes. For low В 
values оЁ вр the region denoted у 1.0 
corresponds 10 parameter values Ваг W 
generate у rthythms where all neurons (Е1, 0.5 B 
E2, and 13) spike in every cycle. The « у 
population» state y__ 15 located to the left 0.0 
with intermediate values оЁ g, . In this 0.0 0.1 02 g, mScm? 
region, the neurons В1 and PEZ both 

demonstrate В rhythms of 16-17 Hz, but 
their overall behavior is found to produce 
oscillations in the y band. There is a large 
region В occupied by В oscillations where 
Е1 and Е2 are in full synchrony with half 

Fig. 3. Different oscillatory modes ав functions оЁ 

в,. (the coupling between excitatory neurons) and 
ёа (the conductance for the slow K-channel in 
excitatory neurons). In the gray region the у„ апа 
В modes coexist. In the region denoted hififorder 
solutions we find a great variety of frequency-locked 

states the frequency of the y rhythm. With 
decreasing T they evolve into the В population 13‚,.‚ - This state produces а В rhythm, but 
only half as powerful ав the В state described earlier since only one excitatory neuron 
(E1) spikes. Within а range оё parameters one can observe high-order solutions with 
different combinations of spiking and silent states in the two excitatory neurons [22]. The 
dynamics seems to be limited in the & „, direction by the appearance of a silent-state, in 
which Е1 and Е2 never spike due to the effects of the after-hyperpolarization current in 
combination with the spontaneous spiking оё the I3 neuron. In е gray region, they,,, 
and е В modes coexist. The observation оё а large region with coexisting solutions may 
have important inferences with respect to brain function. The question is: Can the Kopell 
model switch between the coexisting states? Physiologically, the externally applied 

current i ¢, , together with ionic and synaptic currents, could represent the influence of 

other neurons of the brain. As previously noted, this influence may be considered in many 

instances as stochastic. Let us, therefore, examine the influence of fluctuations on the 

switching process. 

3.2. Stochastic dynamics. Since noise may have different origins and can 

contribute in different ways, we assume that our network operate in a noisy field (Fig. 2). 

We represent this ав Gaussian noise Е(г) with intensity D added to the first equations of 

each neuron. 
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Switchings between coexisting Y, апа В modes. With noise оё sufficient intensity, 

the system switches between two states. ’This can be characterized in different ways. First, 

ме can introduce а phase shift between е spiking events 1 Е1 and E2 а5 Ap=2/T. In 

this case, the system can be considered ав bistable where а trajectory alternates between 

Аф=0 and Аф=л. With increasing noise intensity, hopping becomes more frequent. 

Secondly, the system сап be described via е overall dynamics of the excitatory neurons. 

Let us choose е parameters 10 be т е region where у and В oscillations coexist 

(point A in Fig. 3). Т the noiseless case, with the applied ifitial conditions, the resulting 

output oscillations is а В rhythm. This corresponds to а sharp peak at ffl=17 Hz. With 

noise, ап additional peak appears а! f,=34 Hz. With increasing noise, the peak аг fy 

becomes broader and smaller in amplitude. 
To describe the switching dynamics ме can evaluate different characteristics. 

Fig. 4, а illustrates the behavior оЁ the residence time (solid and dotted curves) in the 

bistable system with Аф=0 апа Аф=л. With vanishing noise, the system remains in the 

Аф=0 state апа the residence time tends 10 infinity. When noise 15 introduced, the system 

can switch ю е other state. With increasing noise, the residence times in the two states 

tend to become equal. 

A quantitative measure of coherence is the so-called regularity coefficient which 

can be calculated ав [14}; 
R = @@, (20) 

where т 15 specified аз the switching Нте between the states (Fig. 4, а, dashed curve) ог 

ав the interspike interval (Fig. 4, b). The time averaged duration identifies the mean 

period and, hence, the mean frequency (f)=1/(x) оё е noise-activated oscillations. Figure 

4, а illustrates how е coherence оЁ the switching events (dashed curve) grows 

monotonically when the noise intensity is increased. Very strong noise causes fast 

switching, The residence time then becomes less ап two interspike periods, and our 

two-state approach no longer applies. The spike train provides an efficient way to code a 

sequence of action potentials with nearly the same shape since the most important 

information in neuronal systems is widely believed to be coded in the time sequence of 

action potential generation [23]. The spike train is а binary time series with а value 1 at 

the time of action potential generations and 0 at other times. We analyzed the coherence 

properties for spike trains in the presence оё noise. The results оЁ а calculation оё the 

regularity coefficient (20) ав а function оЁ noise intensity are shown in Fig. 4, 5. The 

curve is seen to display a maximum for noise intensities around D=0.4. For weak noise, 

the contribution оЁ y,,, to the whole spike train is small. At the optimal noise intensity В 

and v, contribute equally ю the spiking train. Strong noise destroys the В rhythm, апа 

the regularity decreases. This represents ап example оё coherence resonance in the noise- 

induced switching between different modes of the neural system. 

<8,> R 

12000 Ч 

8000 fy ` 
4000 | * 12 

о* 1.0 
0.10 0.1 1.0 D 

a b 

Fig. 4. () Residence time (B, ,) for Аф=0 (solid curve) and Ag=x (dotted curve) апа regularity coefficient 

R оЁ the switching time (dashed curve) as functions of the noise amplitude; (b) regularity coefficient R 

calculated from the interspike intervals; gj,w=l,25 mS/en?, 8,,=0.05 mS/cm®. Аф represents е phase 

shift between the spiking events in the excitatory neurons Е1 and Е2 
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Hopping between y апа В regimes. In 
the diagram presented т Fig. 3, regions of y 
and В thythms are separated by е region 1.7 | ] 
of high-periodic solutions. Fixing the 
parameters at the point B of the diagram, 
when adding noise we observe а direct 113 - 4 

transition between the main rhythms. The 
residence time in the В regime now grows 
with increasing noise intensity. Our 1,09 - o 

measure of coherence calculated over the 
interspike intervals indicates a well- 
pronounced maximum at some optimal 105 L Й — Й й 

noise intensity аг which В and у spike trains 0.0 1.0 2.0 D 
alternate in a regular way (Fig. 5). Here, we 

observe another example оЁ regularized Е. 5. Coherence dynamics of interspike intervals in 
hopping events induced by'applied noise, с Kopell model for ёанр705 mS/cm? and г„ 
but now with опе оЁ the involved states =0.2 тш$/спй. As before, D represents the moise 
being unstable for е considered parameters. amplitude 

Onset of spiking dynamics. Let us hereafter see how noise can cause firing events 
in this local network. (Parameter values corresponding to point C in Fig. 3.) It is known 
that the behavior of spike trains can exhibit coherence resonance at ап optimal noise 
intensity, ав described for а single Hodgkin-Huxley model by Lee et а!. [24]. In this case, 
noise affects the dynamics of the system in two ways: (i) increasing the noise intensity 
decreases the silence (activation) time so that the contribution of the spiking dynamics 
increases. This enhances the regularization of spiking dynamics of the membrane 
potential. (ii) noise also produces amplitude and phase fluctuations of the firing 
dynamics, destroying the periodicity in spiking events. The competition оЁ these two 
mechanisms produces the phenomenon of coherence resonance, i.e. а maximal degree оЁ 
coherence for an optimal noise level. This phenomenon is responsible for the first peak of 
coherence for Е1 (Fig. 6). With vanishing connection between the excitatory cells 
(g,=0.0), Е2 demonstrates coherence оЁ spiking events аг а higher noise intensity 
because of its different internal parameters. Due to inhibitory synapses (controlled 
directly т the Kopell model by varying g, апа g,), е first neuron adjusts its spiking train 
and demonstrates а secondary coherence resonance а! higher noise intensity (Fig.6, а). 

R т & Г т 

20 Г 1 20} 

18 - 418 Г 

16 F 4 16+ 

14 b 3 14 | 

12 + {1 12t 

10 К4 . 10 
01 1.0 100 D 0.1 1.0 100 D 

a b 

Fig. 6. Regularity Юг @) g,,,=2.0 mS/cn?, g, =0.0 mS/em® and (b) н „720 mS/ent, g, =02 mS/em?. 
Note, how е two peaks observed in @) are closer to one another т () 
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When the E1-E2 connection is introduced (g,,=0.2 mS/cm?), the two peaks approach one 
another and the excitable units demonstrate a well-pronounced peak of coherence at the 
same mnoise intensity. This is illustrated in Fig. 6, b. Because of the synchronization 
effects, the maximal уаше of R 18 higher than in the previous case [25]. 

4. Noise-induced rhythms 

Let us hereafter focus оп noise-induced rather than оп noise-activated oscillatory 
modes. This implies that we focus оп time scales that are generated and controlled by 
noise and do not exist in the deterministic case. We provide experimental observation of 
such multimode behavior and investigate the conditions of generation and entrainment of 

the specified modes. 

@ snail (Fig. 7) [26]. A single monovibrator 
circuit [27], being the functional unit in our 
electronic experiment, captures the essential 
aspects of excitable systems generating a 

The purpose of this section is to 
describe the two-mode stochastic behavior 

‚ оё ап electronic system that has been 
& ° constructed as а hard-wired version оЁ the 

simplest breathing rhythm generator for a 

single electric impulse whenever the input 
voltage exceeds the threshold level. The 
implementation of interacting excitable units 
shown in Fig. 8, а contains self- and 

Fig. 7. Schematic presentation оё а breathing rhythm mytually inhibitory coupling chains that can 

generator for а snail increase the threshold voltages of the first 
(V,,,) апа second (V,,) units. Each coupling chain contains а rectifier and а low-pass 
filter with coupling strength g, and time constant T, where i, / denote е unit numbers. 
Note that the self-inhibitory time constants were chosen 10 be equal and to be greater than 
the mutually inhibitory time constants, i.e., 7,;= Т,> т T, 

With а small noise intensity D (which 15 the same for е two units), both excitable 
units keep silent most оё е time, ап their threshold voltages remain equal (V,,=V,,,). 
For intermediate noise levels, the coupling influence on the threshold voltages becomes 

х LA O A G У А R 

г AT 0 L O LT 1AM A 
20 ms 

Fig. 8. (а) Two monovibrators with delayed inhibitory couplings imitate the simple neural circuit. ф) 
Stochastic spike trains generated by the first and second excitable units. Antiphase behavior is indicated on 
the average 
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significant. At the same time, since mutual inhibition makes the in-phase regime unstable, 
one of the two units gets the upper hand with respect to its ability to suppress the firings 
оё the other. However, with intensive firing, е slow self-inhibitory chain with rate ¢, 
(ог 7,,) comes into operation and suppresses the activity of the stronger unit. This creates 
better conditions for excitation of the other unit, and the process continues in an 

alternating manner, producing a behavior with time-varying firing rates for the two 
excitable units (Fig. 8, b). 

In this operating regime, two peaks in the power spectrum are clearly distinguished 
(Fig. 9, а). The high frequency peak corresponds 10 noise-induced oscillations т @е 
single system while the low frequency peak reveals a new noise-induced oscillatory 
mode. Hence, the system of coupled excitable units generates a new oscillatory mode that 
is characterized by the values оЁ т апа by the relation between the noise intensity and фе 
initial threshold voltages (V,,;,V,,,): Fig. 9, b demonstrates how the frequencies ов these 
oscillations (open circles) depend on the noise intensity. Inspection of the figure clearly 
shows that with increasing noise strength, both frequencies grow (i.e., they are noise- 
controlled), but the growth rates are different (i.e., they operate independently оё each 
other). For strong noise, an excitable system can be immediately pushed out from the 
equilibrium state in spite of the threshold voltage. The low frequency peak in the power 
spectrum disappears, and the additional time scale no longer exists. 

The regularity of the low-frequency stochastic oscillations 15 related to the process 
оЁ pulse generation in the-state оЁ each excitable unit. Hence it 15 determined by the effect 
оё coherence resonance [27]. Fig. 9, b illustrates how the output regularity В (filled 
circles) is suddenly increased when low frequency oscillations appear, but @е peak аг the 
noise-induced eigenfrequency f, becomes washed  out because of е threshold 
modulation. 

f,Hz 

1 600 

4 400 

0 200 400 f,Hz 00 

a b 
0.0 0.2 0.4 D,v? 

Fig. 9. Two-mode dynamics in the excitable system presented 1 Fig. 8. (a) Power spectrum with well- 
pronounced peaks (D=0.34V?) and (b) peak frequencies (open circles) and measure оё regularity R 

(filled circles) vs noise intensity D 

5. Discussion 

\№е considered noise-activated and noise-induced rhythms т models representing 
three different neural systems: (i) а single-neuron model of а peripheral pattern generator 
(а mammalian cold receptor); (ii) а small neural network (the Kopell model) that can 
account for the coexistence оЁ В and у rhythms 1 the brain, and () а coupled 

monovibrator system that can serve as a model of a simple breathing rhythm generator. 

Our results indicate that the interaction between stochastic phenomena and complex 
deterministic dynamics may lead to a variety of different phenomena of importance for 
neural rhythm generation. 

The single neuron model mimics the discharge pattern of peripheral cold receptors 

where impulse generation is determined by slow-wave oscillations which trigger one or 
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more impulses during their depolarizing phases. This holds true for both deterministic 
and stochastic simulations with the exception that noise can induce spiking as well as 
skipping around the onset of period-one activity. In the regular bursting range noise does 
not produce any qualitative effects оп е pattern but mainly smoothens the 

deterministically abrupt transitions. In the chaotic regime noise destroys the fine structure 

of the bifurcations. Thus, noise is assumed to play as essential role in sensory neurons: 

spike generation is clearly phase-locked to the underlying oscillations but noise 

determines the threshold crossings and hence the times at which spikes are generated. In 

addition to serving as cellular substates for synchronization in neuronal networks, 
subthreshold oscillations can ао serve ав cellular substates for а sensitive and 
differential neuromodulatory control based оп the intrinsic oscillatory dynamics аб 

optimized by naturally occurring noise sources. Further studies оп subthreshold 

oscillating neurons should encompass е interesting neuromodulatory and encoding 

properties which arise from cooperative effects оЁ oscillations with noise. 
The neuronal network model also displays spiking patterns that are modified in an 

essential manner by е presence оЁ noise. Especially in the area with coexisting 
solutions, noise causes the network to jump from one state to е other. There is а sharp 
transition between the oscillatory mode and a hopping state between the coexisting 
solutions, and this transition 18 controlled by е noise intensity. The output signal 
demonstrates quite «regular» switchings for а certain noise intensity. Moreover, noise can 
initiate switchings in е region where the main В ап у oscillations are separated by high- 
periodic solutions in the parameter space. In this case, we again observe an optimal noise 
intensity at which the jumping behavior becomes coherent. A particularly interesting 
finding 15 that, due 10 synaptic inhibitory interaction, @е excitatory cells can demonstrate 

double coherence resonance [28]. With the introduction of a coupling between these 
neurons, the two peaks of regularity merge together, giving rise to further gain of 
regularity by virtue оё synchronization. 

We also showed that a simple system of coupled excitable functional units can 
generate а few oscillatory modes аг are induced апа controlled by noise [29]. Possible 
advantages of multimode dynamics may include: (i) increased sensitivity via coherence 
resonance; we have found multiple coherence resonance phenomenon related to different 
frequency entrainments and to the appearance of additional time scales; (ii) expanded 
flexibility. The presence ап interaction оЁ two distinct oscillatory modes enrich @е 
dynamical patterns. The electronic approach involving excitable stochastic units with 
self- and mutually inhibitory couplings can be applied to simulate neuron systems with а 
priory given phase relations. 

This work was partly supported by INTAS grant 01-2061 апа RFBR grant 
01-02-16709. O.S. acknowledges INTAS (Grant YSF 01/1-0023) апа the Lundbeck 
Foundation. 
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НЕЙРОННЫЕ ГЕНЕРАТОРЫ РИТМА В ПРИСУТСТВИИ ШУМА 

Е. Mosekilde, O.B. Сосновцева, Д.Э. Постнов, Н.А. Braun, M.T. Huber 

Исследуются динамические особенности генерации последовательности 
спайков в присутствии шума для TPEX различных моделей нейронных генераторов 
ритма: простой нейронной модели, которая воспроизводит импульсную модуляцию 

для кодирования температуры в холодовых рецепторах млекопитающих, минима- 
льной нейронной сети, описывающей переходы между бета- и гамма-ритмами в 
мозге, и электронного переключательного устройства, представляющего собой 
простой генератор дыхательного ритма улитки. Мы показываем, что шум может 
объяснить множество особенностей в наблюдаемой последовательности спайков, 

вызывать когерентные переключения между различными  состояниями, и 
индуцировать новые ритмы в малых нейронных ансамблях. 
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