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SYNCHRONIZATION, NOISE AND ELECTRORECEPTORS 

Alexander Neiman, David F. Russell, Frank Moss, and Lutz Schimansky-Geier 

Classical notion of synchronization, introduced originally for periodical self-sustained 
oscillators, can be extended 10 stochastic systems. This can be done even in the case when the 
characteristic times of a system are fully controlled by noise. Stochastic synchronization is 
then defined by imposing certain conditions 10 various statistical measures of the process. We 
teview various approaches 10 stochastic synchronization and apply them ю study 
synchronization in the electrosensory system of paddlefish. 

1. Introduction 

Among other nonlinear effects, the phenomenon оё synchronization 15 probably the 
most often observed in the great variety оЁ systems оё different origins. From а general 
point of view synchronization represents the relation between two objects that are 
oscillating in time. The oscillators are said to be synchronized, ог 1 «synchrony», when 
there exists a fixed phase relation between them. 

Besides man-made systems where synchronization is actually used [1], this 
phenomenon has been observed т biological systems [2] starting from microscopic level 
оё cell populations [3] and single neurons [4 - 6] to large neural networks [7], human 
cardio-respiratory dynamics [8] as well as external synchronization of human cardio 
rythm [9], and behavior оё large populations оё living objects [10]. We refer 10 а recent 
book [11] for a comprehensive review on modern theories and applications of 
synchronization. 

Synchronization occurs when a nonlinear oscillator, possessing a stable periodic 
motion, is subjected to an external time-dependent force or is coupled with another 
oscillator. Classical theory оЁ synchronization operates with so-called self-sustained 
periodic oscillators. The characteristics оё stable periodic oscillations оё such systems, 
represented by a stable limit cycle in the phase space, are determined by natural 
properties of the oscillator and do not depend upon initial conditions [12]. When a self- 
sustained oscillator is driven by ап external periodic force оЁ appropriate amplitude апа 
frequency, the oscillations of the system occur in phase with the external signal. 
Synchronization is thus defined аз phase locking and frequency entrainment. The same 
effect occurs when two (or more than two) self-sustained oscillators are coupled. 

Recent studies have shown that the class of systems and driving signals which 

exhibit synchronization could be significantly extended. Different types оё 
synchronization have been found in chaotic systems, including the classic type of phase 
synchronization in periodically driven апа coupled chaotic systems [13 - 16]. 
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In this paper, we are concerned with noisy synchronization. Though originally 

studied quite early [17], the theory оё stochastic synchronization has only recently been 

applied to biological or medical systems. As intuitively expected, noise usually acts 

against synchronization. However, recently it has been shown that for а large class оЁ 

stochastic systems е phenomenon of noise enhanced phase synchronization can be 

observed [18]. 

2. Stochastic synchronization 

Synchronization of coupled periodic self-sustained oscillators is understood as 

adjustment оё their phases апа frequencies. If Ф(г) is the phase оЁ one oscillator and W(r) 

is the phase of another oscillator (or the phase of periodic driving force), then the phase 

locking condition reads: 
\$(2)! < const, @(r) = nd(r) - m¥(r), (1) 

where л and т are integer numbers. The phases ®(f), Ч(г) аге defined оп а whole real 

line. In the regime оЁ synchronization, the phase difference, ¢(¢), therefore, remains 

constant forever. In the simplest case оЁ 1:1 synchronization the response оЁ the oscillator 

is represented by one complete cycle per one period of driving force. More general case is 

m:n synchronization, which means that during т complete cycles of driving signal there 

occur л complete cycles оЁ the oscillator. For periodic oscillators е synchronization 

condition Ед. (1) is equivalent to the notion оЁ frequency locking nw=n®=mQ=m¥. 

The concept of synchronization for stochastic systems is not trivial. As is well 

known [17] noise influence оп а self-sustained oscillator results in the diffusion оЁ 5 

phase. That is why the properly defined phase difference ¢ is also diffuses so that the 

condition Eq. (1) never fulfills in the presence of Gaussian noise. The phase locking may 

occurs only for random periods of time апа 15 interrupted by so-called phase slips. Thus, 

the definition оё synchronization in the presence оЁ noise appears 10 be «blurred». That is 

why the conditions of synchronization should be defined in statistical way and we have to 

use the notion оё «effective» ог «stochastic» synchronization [19,20]. It can be defined by 

imposing restrictions оп (i) signal-to-noise ratio, 1 the case оЁ periodically driven self- 

sustained oscillator; (ii) frequency fluctuations; апа (iii) phase fluctuations. 

We use here the strongest definition of stochastic synchronization based on 

statistics оЁ phase fluctuations. Statistical measures оё synchronization can be based оп 

the stationary probability density оЁ the phase difference wrapped into [0,2х]. A well- 

expressed maximum will correspond 10 а strong synchronization in statistical sense. This 

сап be further quantified by фе synchronization index [7] as the first Fourier mode оё the 

stationary probability density of the phase difference: y’=(sing)*+{cos¢)”. The synchro- 

nization index changes from 0 (no synchronization, unfirom distribution of the phase 

difference) to 1 (perfect synchronization, 8-type distribution оЁ the phase difference). 

Another way 10 characterize stochastic synchronization 15 to calculate the effective 

diffusion coefficient for the phase difference. The system is effectively synchronized by 

external periodic force if the mean time in course of which the instantaneous phase of the 

system is locked, 15 larger than some given value. The quantity related to this definition 

which can be used as a measure of phase coherence is the effective diffusion constant 

D, defined а5 D =Ydldi[(¢*(1))-(4(1))*]. The effective diffusion constant describes 

spreading of an initial distribution of the phase difference due to noise-induced diffusion. 

It can be shown that the effective diffusion constant D g is inverse proportional ю the 

mean time interval оЁ phase locking. 
Phase synchronization in conventional oscillatory systems, for instance, the van der 

Ро! oscillator, is usually destroyed by noise [17]. However, in systems exhibiting the 
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phenomenon of stochastic resonance noise can enhance synchronization [23,18]. 
Periodically driven bistable or excitable stochastic systems can be considered from the 
synchronization point of view. However, in order to study phase synchronization we need 
to introduce instantaneous phase оё the system. The problem 15 Фаг for aperiodic signals 
the definition of the phase becomes ambiguous. 

Several approaches can be used. The formal but general definition оё instantaneous 
phase 15 based оп the concept of analytic signal [21], whereby the instantaneous phase is 
defined as the argument of the analytic signal. The analitic signal is a complex function of 
time with the real part being the original signal and the imaginary part being the Hilbert 
transform of the original signal. This approach was used to study phase synchronization 
оё chaotic systems [16] апа stochastic resonance systems [18]. 

In the case of bistable or excitable systems the phase can be associated with the 
moments of time 7, when а particle crosses а barrier [18] ог with occurrences оЁ spikes in 
the case of excitable systems. For such stochastic point processes the phase increases by 
Эл every time ¢, апа linearly interpolated between ¢,,, апа ¢, [18,20]. Another approach 
was recently proposed in [22] where time ¢, were associated with a level crossings. This 
approach allowed 10 calculate analytically so-called Rice frequency and to compare it 
with other approaches, for example with analytic signal approach [22]. 

As soon as the phase is defined we can pose synchronization problem: whether the 
instantaneous phase оЁ the switching and the corresponding mean switching frequency 
can be locked by external periodic force. In [23,18] it was shown that the mean switching 
frequency in periodically driven bistable systems can be locked in a finite range of noise 
intensities, while the effective diffusion coefficient exhibits a minimum being plotted 
versus the noise intensity. In [24] mutual synchronization of two coupled stochastic 
bistable systems was studied. An analytical approach for calculations of the effective 
diffusion constant was developed in [25]. In this way the notion of synchronization can be 
extended to a wide class of systems whose characteristic time scales are completely 
controlled by noise. 

3. Eleciroreceptors in paddlefish 

The paddiefish Polyodon spathula, named for its long flatiened spatula-like 
appendage extending in front of the head, the «rostrum» (see Fig. 1). The rostrum is 
covered with tens of thousands of sensory receptors, morphologically similar 10 the 
ampullae оё Lorenzini оЁ sharks and rays, well-known Ю be passive electroreceptors. 
These ampullary-type electroreceptors respond to the microvolt-scale electrical signals 
emitted by planktonic prey such as Daphnia, and are used by paddlefish to locate 
plankton during feeding behavior [26]. The location оЁ the rostrum, out т front of the 
mouth, allows it to function ав ап «early warning system» for approaching prey, а5 the 
fish swims forward continuously. Hence the rostrum functions а$ ап antenna, carrying 
arrays of electrosensors. 

Electroreceptors in paddlefish form а passive sensory system, meaning that 

Fig. 1. Photo of a juvenile paddlefish 

86



paddlefish only receive signals, from external sources. An external opening (pore) in the 
skin, 80-210 и diameter, leads into а short canal =200  long. The pores are organized 
into clusters оЁ 5-20 оп the rostrum, but there are much larger clusters оп the head, gill 
covers, and near the mouth. The internal end of each canal is covered with a sensory 
epithelium. An epithelium is a layer of cells, one cell thick, typically lining a hollow 
organ. The epithelium contains two types of cells. It is the «hair cells» which are 
considered electrosensitive. The number оё receptor cells per epithelium is <400. The hair 
cells are interspersed among «support cells». The support and hair cells form «tight» 
intercellular junctions, ог high-resistance seals, which block extracellular paths from the 
canal to the interior of the body, reducing the flow of electrical current. The term 
«electroreceptor» 18 thus refers to the entire structure оЁ pore + canal + epithelium + 
primary afferent axon. Although the hair cells are the actual sensors, the spike-train coded 
output of the primary afferent is what is most often recorded, using a microelectrode 
placed in the sensory ganglion (collection of nerve cell bodies), located near but outside 
the brain. A key feature of the spike trains from the primary afferents of ampullary 
electroreceptor 15 their spontaneous quasi-periodic noisy firing patterns. It was recently 
discovered that the electroreceptors in paddlefish possess a novel type of organization of 
being composed from two distinct types оё oscillators [27]. One озсШагог resides т а 
population оё epithelial cells and is synaptically and unidirectionally coupled with second 
oscillator, located in the afferent terminal. The fundamental frequency оЁ epithelial 
oscillator is 25-27 Нг аг 22°C for different electroreceptors, while the mean firing rate ог 
different afferents varies in a wide range of 35-65 Hz. The unidirectional coupling of 
these oscillators results in a specific biperiodic firing patterns. However, only afferent 
oscillator 15 affected by external electrical stimuli [27]. 

Thus, the electrorecepor can be represented by а dynamical system оЁ two 
unidirectionally coupled oscillators. Therefore, it is natural to expect that electroreceptor 
cells can be synchronized by a weak external periodic field. 

In vivo electrophysiological experiments has been performed with juvenile 
paddlefish. A detailed description of the experimental setup can be found in [26,27]. 

4. Synchronization of electroreceptors by periodic electric field 

We stimulated electroreceptors by а weak electric field generated by а dipole 
located near е rostrum оЁ е fish. The electric field strengths were comparable in 
magnitude ю those generated by zooplankton (а few tens of uV/cm). We recorded the 
spike train generated by a primary afferent and the periodic electric signal from the dipole 
simultaneously. 

The frequency of stimulation was always significantly lower than the mean firing 
rate (mean frequency) of the electroreceptors, since electroreceptors respond best at low 
frequencies 4-10 Нг [26}. Thus муе can expect higher order synchronization where there 
are several spikes per one stimulation period. A generic model for a periodically driven 
self-sustained oscillator is the circle map [2]. The circle map represents a stroboscopic 
Poincaré тар оё а quasi-periodic motion. It has а general form оЁ 

Фн = %, + р +/(ф,) mod2r, @ 

where the parameter p has the meaning of the ratio of fundamental frequencies of the 
oscillator and the driving force without coupling between them and f{¢) 15 а 2л periodic 
function. In опг particular case we can strobe the phase оё the periodic stimulus л/г at 
the moments оё time 7, when the afferent spikes occur. In other words, we calculate the 
phase оё а spike ¢, relative to the stimulus phase: л/ апа then define ¢, оп а unit circle: 
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¢, =/, modl, () 

where 7 is the stimulus frequency. In е case of perfect synchronization the circle тар 

(2) possesses а periodic cycle, such that the dependence о! ¢, versus л (time) will be 
represented by several horizontal lines. The number of lines is determined by a particular 
phase locking regime. For example, in the case 1:5 synchronization we will observe 5 
horizontal lines. The results of calculations using Eq. (3) are presented in Fig. 2. Three 
different regimes can be clearly distinguished. At a low stimulus frequency (5 Hz) the 
high-order mode-locking of 1:17 is realized during some time segments. The pronounced 
1:5 phase locking occurs at f=17 Hz. The five horizontal stripes correspond to phase 
locking segments, while the inclined lines correspond to phase slips. The phase locking 
occurs during а few hundreds оЁ stimulus periods. Finally, аг higher frequency /=21 Нг 
we observe quasi-periodic behavior with no synchronization. The synchrograms (see also 
[8]) shown in Fig. 2 has qualitatively the same structure as iteration sequences of 
stochastic circle map. 

The statistical evidence of synchronization behavior 15 also presented @ Fig. 2 а5 
the probability density of the cyclic phase difference. In the case of strong 1:5 mode 
synchronization, the probability density consists оЁ well expressed peaks corresponding to 
the phase-locking patterns. 

In the examples shown above synchronization occurs without significant 
modulation оё the firing rate of the afferent neuronms, а! is, spikes are uniformly 
distributed over @е periods of external stimuli. We observed, however, different type оЁ 
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Fig. 2. The cyclic phase difference of spike trains, calculated using Eq. (3), for the indicated values of 
dipole electric field frequency. The corresponding probability densities оё the cyclic phase difference are 
shown at the right sides
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Fig. 3. Examples of recordings of spike train from ап electrorecepior cell stimulated by а dipole electric 

field аг 5 На with two different amplitudes. Corresponding calculation оё the cyclic phase difference are 

shown below 

primary afferents responses 10 external stimuli in terms оЁ bursts [28]. Га such а case 

external stimulus induces qualitative change in the firing pattemns of afferent neurons: 

transition to bursting mode, when spikes concentrated in groups of bursts. With periodic 

stimuli ме again observed synchronization, but now the firing rate is modulated 

significantly by the stimulus. An example of such synchronization is shown in Fig. 3, 

where an electroreceptor was stimulated by 5 Hz electric field. For a small amplitude 

(Fig. 3, а) the afferent already exhibits bursts, but synchronization is very poor: there is 

only one short phase locking segment. For a larger amplitude оё periodic stimulus 

synchronization 15 clearly observed (Fig. 3, b): spike train is organized in bursts of 10-11 

spikes. Moreover, individual spikes inside bursts are locked to specific positions on the 

stimulus period, which reflects phase synchronization. 

5. Synchronizatien due to common noise 

In paddlefish electroreceptors, е individual afferents usually possess different 

mean frequencies (mean firing rates) ап different degrees of frequency variability [27]. 

Moreover, they are noncoupled. It appears, however, that all the electroreceptors have 

similar slow dynamics, which was revealed by synchronization of noise-induced bursts 

[28] in different receptors. 
We simultaneously recorded the single-unit spikes from pairs оё electroreceptor 

afferents in vivo, using metal microelectrodes. Опе receptive field was оп the left side of 

the rostrum, the other оп the right side. Their locations оп opposite sides оЁ the rostrum, 

which are innervated by different nerves, guaranteed that the pairs of afferent neurons 

were not coupled. We used uniform-field stimulation of all the electroreceptors: stimulus 

currents were passed between 15х5 ст chlorided silver plate electrodes аг the ends of the 

experimental chamber (see [28] for experimental details). A computer-generated zero- 

mean Omstein-Uhlenbeck (OU) noise process was used. The correlation time was set to 

be 0.002 sec, corresponding to a 500 Hz bandwidth. We generated a sequence of 30 

segments of OU noise with incrementing intensities. Each noise segment was 180 sec 

long, and segments were separated by 5 sec о по stimulus. For comparison, we also used 
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computer generated white noise, high-pass filtered OU noise, or noise from a General 
Radio model 1390 B generator which was lowpass filtered by ап 8-pole Bessel filter set 
to 50 Hz. 

Stimulation with weak noise (<2.5 uV/cm rms) did not change the firing mode оЁ 
an electroreceptor afferent, but rather led to the well-known effect of widening the peak 
in е probability density оё interspike intervals and, correspondingly, Ше power spectrum 
реаК at the mean frequency оё фе afferent [27]. When noise of а certain intensity (>2.5 
uV/cm rms) was applied, the firing patterns оё the afferents changed drastically such that 
afferents produced bursts: spikes were concentrated in clusters оЁ bursts which were 
separated by quiescent epochs. The interspike intervals within a burst decreased towards 
the center оЁ the burst [28], indicating а parabolic type оё bursting [29]. 

A new slow time scale is introduced by the noise, and can be expressed as the 
mean interburst interval (v,). The mean interburst interval declined exponentially with 
increasing noise intensity, which was well fitted by the Arrhenius law, (z,}=vexp(A%o?) 
[28]. This implies аг burst generation is excitable, and has а well-defined threshold, A, 
estimated аз =3 pV/em, which is only 3-fold higher than the limit оЁ electroreceptor 
sensitivity [28]. 

One of the functional implications оё bursting regimes is synchronization [30]. 
Indeed, the existence of bursts implies a slow time scale which makes synchronization of 
burst onsets easier in comparison with synchronization of individual spikes. 

А representative example оЁ data from two different afferents, recorded 
simultaneously, is shown in Fig. 4. In the absence of stimulation, the individual spikes in 

these neurons were not synchronized ог correlated, since their mean firing rates were 

different: afferent #1 fired faster (45.1 Hz) than afferent #2 (33.4 Hz). With noise 
stimulation switched on, each burst started almost simultaneously in е two neurons, 
even though the number of spikes inside a burst was different for the two neurons. 

We characterized the coincidence оЁ bursts п pairs оЁ neurons in terms оЁ 
stochastic synchronization, measuring the phases ¢, ,(¢) оё burst onsets in each neuron, 
which increases by 2= every time а burst occurs, and interpolates linearly between two 

sequential burst onsets: 
ф( = 2л(г-т, VY (x,,, V-7, V) + лй, 

(1) = 2x(t-t @)/(x, , P @) + длт, 

where ,( and т © are bursts onsets in the first апа е second neurons, respectively, and 
7 Wcrer,, O, v D<i<r, @. When stochastic synchronization occurs [17], constant 
segments оё the phase difference A¢(f)=¢,(r)-9,() (phase locking) are interrupted by 

afferent 1 

0.4 sec TStimulus start 

Fig. 4. Example оё simultaneous recordings of spike trains from а pair of electroreceptor afferents. The 
onset of stimulation with computer-generated OU noise оЁ 16.8uV/cm rms amplitude is marked by the 
arrow
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Fig. 5. Probability densities оЁ the phase differences shown in the inset. Insets: Phase differences оЁ burst 
onsets in а pair of afferents for фе following noise rms amplitude: () 2 uV/em, (2) 8 uV/em, (3) 20 uV/icm 

abrupt 2л phase slips. This is illustrated т Fig. 5 for noise-induced bursting, where the 
phase differences for three different noise intensities are presented. For а large noise 
intensity (curve 3), the burst onsets are synchronized, which 15 expressed in the existence 
of horizontal epochs of phase locking lasting several seconds. The probability density of 
the phase difference, Р(Аф) (see Fig. 5) characterizes the degree оЁ synchronization: а 
well-expressed peak @ P(A¢) indicates synchronization, while а uniform distribution 
indicates its absence. The probability density is nearly uniform for weak noise, when 
bursts in the two neurons are not synchronized. With increased noise intensity, the 
probability density оё the phase difference developed а well-defined peak, indicating 
strong synchronization between the bursting neurons. 

6. Conclusion 

In this paper we demonstrated the phenomenon of stochastic synchronization on a 
living «model», the electroreceptor system оё paddlefish. Two types of synchronization 
were considered. The first, synchronization of a single electroreceptor by periodic stimuli. 
And the second, synchronization of two electroreceptors by a common noise field. Young 
paddlefish use electrosensitivity to feed zooplankton and synchronization mechanism 
might be responsible for extreme sensitivity of the paddlefish to weak periodic electric 
field generated by plankton and also for nearly 100 % successful prey capturing. 
Synchronous burst responses оЁ а population оЁ sensory neurons may be а neural 
mechanism for coincidence detection, and may substantially simplify фе neural 
operations that а fish’s brain must perform 10 detect prey and to calculate their position 
and velocity [31]. The impulse-like electrical signal emitted by an individual plankton 
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prey (e.g. Daphnia) moving along the rostrum, or the exponentially correlated Gaussian 
electrical noise generated by swarms of Daphnia [32], may be adequate stimuli for 
evoking synchronized bursting of different electroreceptors during feeding behavior. 

This work was supported by the Office of Naval Research - Physics Division, the 
National Institutes of Health (ROIDC004922-01), the National Science Foundation 
(INT-0128974) апа DAAD (D/0104610). A.N., F.M. апа L.S.-G. thank Prof. Vadim 
Anishchenko for numerious stimulating discussions оп topics 0] stochastic 
sychronization. 
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СИНХРОНИЗАЦИЯ, ШУМ И ЭЛЕКТРОРЕЦЕПНТОРЫ 

А. Нейман, D.F. Russell, F. Moss, L. Schimansky-Geier 

Классическое понятие синхронизации, первоначально BBEJICHHOE UIA 
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мы. Это можно осуществить даже B TOM случае, когда характерные времена 

системы полностью управляются шумом. Стохастическая синхронизация при этом 
определяется как установление некоторых условий для различных статистических 
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веслоноса. 
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