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RECOVERY OF DYNAMICAL MODELS OF TIME-DELAY 
SYSTEMS FROM TIME SERIES 

V.I. Ponomarenko, M.D. Prokhorov, A.S. Karavaev, 
Ye.P. Seleznev, T.V. Dikanev 

‘We develop the method for the estimation оё the parameters оЁ time-delay systems 
from time series. The method is based on the statistical analysis of time intervals between 
extrema in the time series and @с projection of @е infinite-dimensional phase space оё а 
time-delay system 10 suitably chosen low-dimensional subspaces. We verify опг methed by 
using it for фе reconstruction оё different time-delay differential equations from their chaotic 

solutions. 

Introduction 

The present paper deals with the problem of reconstruction of nonlinear dynamical 
models of time-delay systems from time series. The importance of this problem is 
determined by the fact that time-delay systems are wide spread in nature. The behavior of 
such systems is affected not only by the present state, but also by past states. These 
systems are usually modeled by delay-differential equations. Such models are 
successfully used in many scientific disciplines, such as physics, physiology, biology, 
economic, and cognitive sciences. Typical examples include population dynamics [1], 
where individuals pariicipate in the reproduction оё а species only after maturation, ог 
spatially extended systems, where signals have 10 cover distances with finite velocities. 
Within this rather broad class of systems, one can find the Ikeda equation [2] modeling 
the passive optical resonator system, the Lang-Kobayashi equations [3] describing 
semiconductor lasers with optical feedback, the Mackey-Glass equation [4] modeling the 
production of red blood cells, and various models describing different phenomena from 

glucose metabolism to infectious diseases. The advantage of methods proposed in the 
рарет 15 that they can be applied to е systems оё different nature if these systems have 
similar structure of model equations. 

In the most general case the time-delay systems are described by the following 
equation 

(1) + e, XOD(0) + ..+ £ () = РС( ж(е),.- к) 1) 
where x(")(f) is the derivative of order л; e,,...,¢, , are the coefficients; and t,....,t, are the 
delay times. To uniquely define the system (1) state it 15 necessary 10 prescribe the initial 
conditions 1 the entire time interval [-t,,0]. Therefore, the phase space оё the system has 
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to be considered ав infinite-dimensional. In fact, for large delay times even scalar delay- 
differential equations can possess high-dimensional chaotic dynamics. Thus, the direct 

reconstruction оё the system by the time-delay embedding techniques runs into severe 
problems. For а successful recovery of the time-delay systems one has to use special 
methods. The most of them are based оп the projection оЁ the infinite-dimensional phase 
space of time-delay systems onto low-dimensional subspaces. These methods use 
different criteria оё quality for the reconstructed equations, for example, the minimal 
forecast error оё constructed model [5-8], the minimal value оё information entropy [9], 
ог various measures оё complexity оё the projected time series [10-14]. Several methods 
оё time-delay system analysis exploit regression analysis [15,16] апа correlation function 
construction [17,18]. In this paper we further develop the methods proposed by us 
recently [19,20] for the estimation of the parameters of time-delay systems from time 
series for a more wide class of time-delay systems. 

Reconstruction of scalar time-delay systems 

Let us consider one of the most popular first-order delay-differential equation 

egi(1) = -x(1) + flx(t-wy)), @ 
where х(г) is the system state at time ¢, function f defines nonlocal correlations in time, 7, 
is the delay time, and parameter g, characterizes the inertial properties of the system. In 
general сазе Eq. (2) 15 а mathematical model оё ап oscillating system composed оё а ring 
with three ideal elements: nonlinear, delay, and inertial ones (Fig. 1). In the present paper 
ме develop а technique for estimating т f, and ¢, from е time series. 

It should be noted that available for | (O] 2 оян 3 
measurement dynamical variable could be line Teatce Filter 
obtained from different points оё the time- |x(t)| t, |x(t%)| fx) [Ax@T)| & 
delay system (2), indicated in Fig. 1 by the 
numerals 7-3. Let us consider first the case 
when the observed dynamical variable 15 Fig. 1. Delayed nonlinear feedback system. Arabic 
x(#) measured аг the point /. To estimate numerals designate points where а dynamical 
the delay time 7, we exploits the features of variable is measured 
extrema shape and location in the system (2) temporal realization x(r). The peculiarities 
оЁ extrema location in time are clearly illustrated by М(х) plot in Fig. 2. To construct it 
one has ю define for different т values the number N оё pairs оё extrema in x(f), that are 
separated in time by т. If N is normalized to the total number оё extrema, еп for 
sufficiently large extrema number it can be used as an estimation of probability to find a 

pair оё extrema in x(f) separated by the interval т. Let us explain the qualitative features 
оЁ N(x) for various values оЁ parameter ), 

In the absence оё inertial properties (¢,=0) time differentiation оё Eq. (2) gives 

(1) = Ht-v)dfxlt-T) Ydx(iry). () 

From Ед. (3) it follows that if x(t-t;)=0, then #(£)=0. Thus, for e;=0 every extremum оЁ 
x(#) is followed within the time 7, by the extremum'. As the result, N(t) shows а 
maximum for t=v, in Fig. Э@. 

In the presence of inertial properties (¢,>0), which corresponds 10 real situations, 

1 For chaotic temporal realizations оЁ е systems under investigation practically а! critical 

points with x(£)=0 are the extremal ones, апа therefore we call the points with x(1)=0 the extremal points 
throughout this paper. 
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Fig. 2. Number N of pairs of extrema in а realization of Eq. (2) separated in time by, as а function оёт. 

М(т) is normalized 10 the total number оё extrema in time series. (а) e,=0. N(t) has а sharp maximum аг 

the level оё the delay time of the system. (b) eg>0. N(t) has а pronounced minimum аг the level of the 

delay time of the system. The location оё maximum is determined by the parameter g, 

the most probable value оё the time interval between extrema in x(z) shifts from T, 10 

larger values. This effect can be explained using the ring system shown in Fig. 1: the filter 

introduces а certain additional delay in the system. As the result, the extrema за x(r) can 

be found most often аг the distance ;+t, apart (Fig. 2, b). For instance, е computational 

investigation оё Eq. (2) with quadratic nonlinear function /(х)=№-х? allows us to obtain 

ап estimation t~¢/2 for large values of the parameter оЁ nonlinearity A. 

For ео>0 е extrema 1 x(z) are close 10 quadratic ones and thercfore X()=0 

апа x(£)#0 аг the extremal points. It can be shown that in this case there are practically no 

extrema in x(z) separated in time by т To prove this let us differentiate Eq. (2) with 

respect tor 

£ (1) = (1) + ¥t )dfx(tvp) {1z, @ 

ТЁ for x-(r)=0 in а typical case .Ё(г)з&О‚ then, as it сап be seen from Eq. (4), for 20 the 

condition .&(ы„):ьо must be fulfilled. Thus, there must be no extremum separated in time 

by т, from а quadratic extremum and hence N(z)—0. For w#t,, the derivatives 

%(f) апа х(г-) can be simultaneously equal to zero, i.e., it is possible to find extrema 

separated т time by т. The specific configuration presented ш Fig. 2, b м the 

neighborhood of =t 15 duplicated at larger t in the neighborhood of t=27,3x,.... 
The procedure оё the delay time estimation from е М(т) plot considered with 

systems like (2) can be successfully applied to time series gained from a more general 

class of time-delay systems 

(1) = F() x(t-xp))- 5) 

Time differentiation of Eq. (5) gives 

() = x(DF () х(ч удх() + х(-то)дЕ(к(0),х(г-то)дх(г-т)). ©) 

Similarly to Eq. (4), Eq. (6) implies that in the case of quadratic extrema derivatives 

x(£) апа х(г-х)) 90 not vanish simultancously, i.e., 1 x(#)=0, then 3:(1›‹„);:0. 
Thus, for T, definition one has to determine the extrema in the time series and after 

that to define for different values of time т the number N of pairs оё extrema separated in 
time by т and to construct the N(t) plot. The absolute minimum of М (т) 15 observed at the 
delay time <. 

To recover е parameter ¢, and е nonlinear function /` оё system (2) from the 
chaotic time series let us rewrite Eq. (2) as 
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evi(t) +x(1) =Дх(е-т))). (7) 

Thus, it 15 possible to reconstruct the nonlinear function by plotting in а plane а set оЁ 

points with coordinates (x(¢-t), s‘,z'c(t)+x( 1)). According to Eq. (7), the constructed set оЁ 
points reproduces the function f. Since the parameter €, is а priori unknown, one 

needs to plot e:t(l)+x( 1) versus x(#-v,) under variation оё e, searching for а single-valued 

dependence т the plane (x(r-t,),ex(r)+x(f)), which is possible only Юг e=e). As а 
quantitative criterion of single-valuedness in searching for в) we use the minimal length 
оЁ а line L(e), connecting аП points ordered with respect to x(r-t;) in the plane 

(x(r-xy), ex(1)+x(z)). The minimum оЁ L(e) is observed at e=g,. The set оЁ points 

constructed for the defined ¢, in the plane (x(t-,), ex(£)+x(1)) reproduces the nonlinear 
function, which can be approximated if necessary. In contrast to methods presented in 
[11,12] which use only extremal points or points selected according to a certain rule for 
the nonlinear function recovery, the proposed technique uses all points of the time series. 
It allows опе to estimate the parameter ¢, and to reconstruct @е nonlinear function from 
short time series even in the regimes of weakly developed chaos. 

To test the efficiency of the proposed technique we apply it to a time series 
produced by numerical integration оё the passive optical resonator system оё Ikeda [2] 

х(2) = -х(0) + usin(x(t-t;)-x;) 8) 

with p=20, 7,=2, x,=n/3, g;=1. Note that the nonlinear function in the Ikeda equation is 

multimodal опе. Part оЁ the time series 15 shown in Fig. 3, а. The time series 15 sampled in 
such а way that 200 points in time series cover а period оё time equal to the delay time 
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Fig. 3. ( @) Time series оё @е Ikeda equation (8); ( b) number N of pairs оё extrema in the time series 
separated in time by 7, as а function of 7. N(t) is normalized to the total number оё extrema in the time 

series. М (t)=N(2.00); ( с) - length L of a line connecting points ordered with respect 10 х(+-т)) in the 

plane (RPt.), © {4x(1)) а5 а function of &. L(¢) 5 normalized ю the number ой points. 
Lmin(s)=L(l.Lb0); d) - the recovered nonlinear function 
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7,=2. The data set consists оЁ 25000 points апа exhibits about 1000 extrema. Figure 3,0 
illustrates the t-dependence оё е number N оЁ pairs of extrema separated in time by <. 

The time derivatives x(¢) are estimated from фе time series by applying а local parabolic 
approximation. The step of т variation in Fig. 3, а 15 equal to the integration step 7=0.01. 
The absolute minimum оё М(х) takes place exactly аг т=т,=2.00. To construct the L(e) 
plot (Fig. 3, с) the step оё е variation was also set by 0.01. The minimum of L(e) takes 
place accurately аг e=e=1.00. In Fig. 3, d the nonlinear function 18 shown. This recovered 
function coincides practically with the true function of Ед. (8). 

To investigate the robustness of the method to additional noise we analyze the data 
produced by adding to the time series of Eq. (8) zero-mean Gaussian white noise. The 
presence оЁ noise @ time series brings into existence spurious extrema. These extrema are 
not caused by the intrinsic dynamics of a system and temporal distances between them 
are random. With the extrema number increasing, a probability to find a pair of extrema 
in time series separated in time by т has 10 increase in general. The extrema number 
increasing induced by noise is also followed by the increase of probability to find a pair 
оЁ extrema separated by the interval t,. However, for moderate noise levels this 
probability 15 $Ч less ап the probablhty to find a pair of extrema sepamted in time by 
£t Since the absolute minimum оЁ А/(т) is very well pronounced in the absence of 
nolse, it can be clearly distinguished even т the noise presence if the noise level is not 
very high. Hence, the qualitative features оЁ the М(т) plot specified by the delay-induced 
dynamics are retained for а moderate noise level. The presence оЁ noise is more critical 
for the parameter ¢, estimation and the nonlinear function recovery. 

Figure 4 illustrates the results оё the Ikeda equation reconstruction from @е time 
series corrupted with zero-mean Gaussian white noise with а standard deviation оЁ 20% 
of the standard deviation of the data without noise. The location of the absolute minimum 
оЁ N(t) (Fig. 4, а) allows one ю estimate the delay time accurately, t;=2.00. The 
minimum ©Ё L(¢) (Fig. 4, b) takes place аг ¢,'=0.98. The nonlinear function recovered 
using the estimated ¢, and ¢’ 15 shown in Fig. 4, c. In spite оЁ sufficiently high noise level 
and i inaccuracy of e, esnmatxon the recovery of the nonlinear function has a good quality 
which is sngmficamly higher than that reported in [21] for the same parameter values of 

the Ikeda equation with noise. 
In е second case, when the observed dynamical variable 15 х(!-х,) measured аг 

the point 2 (Fig. 1), one can use the described above procedure for estimation of the 
system parameters since the observable is simply shifted in time by the delay Втет,. For 
the (га possible case, when the observed variable is f{x(-t,)) which is measured аг the 
point 3 (Fig. 1), one needs another technique for reconstruction of the time-delay system. 

As well ав т the time series оЁ x(¢), there are also practically no extrema separated 
in time by т in the time series of the system (2) variable f(x(z-t,)), since, df(x(t-t;))/dt= 

EQx(0)+x(1) 
N L 

й 20.07 
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0.0 
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Fig. 4. Reconstruction of the Ikeda equation from its time series x(r) with additive Gaussian white noise 
for noise level оЁ 20%. (a) The N(t) plot. N, ; (t)=N(2.00). (b) The L(&) plot. L, (£)=L(0.98). (c) The 
recovered nonlinear function 
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=.€(r-to)df(.\‘(t-to))/d\'. Then, the delay time T, can be estimated by the location оЁ the 
absolute minimum in the N(<) plot constructed from the variable f(x(¢-7))). 

To тесоуег the parameter g, апа the function f we filter the chaotic signal Кх(-то)) 

with а first-order low-pass filter and plot f(x(t-t,)) versus u(t-t,), where и(/-то) is the 

signal at the filter output, shifted by the time 7, defined earlier. If the filter inertial 
properties are characterized by the parameter е=6), @еп wu(r-tj)=x(t-t)) and е set оЁ 
points constructed т the plane (x(z-t,)), f(x(¢-v,))) reproduces the nonlinear function f. 
Since е parameter &, 15 а priori unknown, one needs 10 plot f{x(t-t,)) versus u(t-7,), 
under variation оё е filter parameter €, searching for а single-valued dependence т the 
plane (и(г-т)), f(x(t-x,))), which is possible only for e=e,. As а quantitative criterion оЁ 
single-valuedness in searching for g, we use е minimal length of a line /( е), connecting 
all points ordered with respect (0 и(г-то) in the plane (u(¢-t,), f(x(t-t))). The minimum 
оё L(x) is observed at e=e,. The set оЁ points constructed for the defined ¢, in the plane 
(u(t-ty), f(x(t-ty))) reproduces the nonlinear function, which can be approximated if 
necessary. 

We apply the method to а time series оё е variable /(х(г-т))) оё the Mackey- 
Glass equation [4] 

х(г) = -bx(e) + ax(t-c) (143 (t-1)), (9) 

which сап be converted to Eq. (2) with e;=1/b and the function 

Кк(ето)) = ax(t-x)(b(1+x (t-7,)))- (10) 

The parameters of the system (10) are chosen ю be а=0.2, b=0.1, с=10, ©=300 ю 
produce a dynamics on a high-dimensional chaotic attractor. The sampling time is set by 1. 

Figure 5 illustrates the reconstruction of the Mackey-Glass system parameters. 
Figure 5, а shows е number N оё pairs оЁ extrema in the time series оЁ fx(r-7,)), 
separated in time by т. The step оё т variation in Fig. 5, а 15 equal to the integration step 
h=1. The location of the absolute minimum оё М(т) allows us to estimate е delay time, 
ч =300. To construct the L(e) plot (Fig. 5, b) we use the step оЁ ¢ variation equal о 0.1. 
The minimum of L(e) takes place at ¢,'=10.0 (g,=1/6=10). The nonlinear function 
recovered using the estimated 7, and е 18 shown in Fig. 5, с. This recovered function 
coincides practically with the true function (10). 

N L Se(et) 
0.08 19 - 

0.1 R 0. 
0.04 B 

=l 0.4 - 

0.0 T T T 0.0 4+——1——T 0.0 T т 
0 200 400 600 t 70 100 € 0.0 08  u(t-t) 

a b е 

Fig. 5. Reconstruction оё the Mackey-Glass system from the variable Дх(!-т)). (a) The N(t) plot. 
N i (T)=N(300). (b) The L(e) plot. L, (£)=L(10.0). (с) The recovered nonlinear function 

‘min 

Reconstruction of nonscalar time-delay systems 

The method оё 7, definition from time series described above for scalar time-delay 
systems can be extended to high-dimensional time-delay systems having the following 
form 
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X(0) + g, D) + g 3(0) = F(8)x(y)), 1) 

Differentiation оё Eq. (11) with respect to ¢ gives 

X0(e) + в)( + ...+ Er‘."(') = 

(12) 
= х()дЕ(К(!)„х(г-т)))/дх(г) + лЁ(г—т„)ЭР (К(0).х(г-т)))/дж(е-т). 

The condition x(#-t,)=0 for ¥(£)=0 will be satisfied if фе left-hand side оё Eq. (12) does 
not vanish. In general, а probability to obtain zero in the left-hand side оЁ Eq. (12) is very 
small and therefore, the М(т) plot qualitatively must have а shape similar 10 that inherent 
in the case of first-order delay-differential equations like (2) and (5). 

The proposed method оё estimation of е parameter ¢, and the nonlinear function 
can be also applied to а variety of time-delay systems оё order higher than that of (2). For 
instance, if the dynamics of a time-delay system is governed by the second-order delay- 
differential equation 

e,x(1) + £,x(1) = -x(7) + Ax(exy)), (13) 

the nonlinear function can be reconstructed by plotting in а plane а set оЁ points with 

coordinates (x(r-t,), sz,'r‘(t)+el,\.c(t)+x(t)). The constructed set of points reproduces the 
function f. Since the parameters ¢, and ¢, are а priori unknown, опе needs Ю plot 

&,%(1)+& #(2)+x() versus x(t-,) under variation of ¢, апа &,, searching for а single-valued 

dependence in the plane (x(t=ty), &,3(1)+£,x(2)+x(1)), which is possible only Юг ¢;=¢,, 
&,=¢,. As а quantitative criterion оё single-valuedness in searching for ¢, and e, we use 

the minimal length of a line L(él,ez) connecting а points ordered with respect to x(t~t;) 

in this plane. The minimum of L(gl,gz) is observed at gl:el, ^52:51. The set of points 

constructed for the defined ¢, and ¢, in the plane (x(#-t,), £,%(¢)+¢,%(¢)+x(2)) reproduces 
the nonlinear function. However, the quality of reconstruction deteriorates, since the 

procedure-involves numerical calculation о the second derivative. 

Recovery of the delay times for time-delay systems 
with two coexisting delays 

Let us consider now а time-delay system with two different delay times, and t, 

() = Р(р x(1-1,) х(г-т)). (14) 

Time differentiation of Eq. (14) gives 

Ж0 = х(ддЕдх(г) + Xt )OFIAx(1-t,) + x(t-,)OF /dx(t-,). (15) 

Similarly to temporal realization of Ед. (5), the realization x(¢) of Eq. (15) has 

mainly quadratic extrema and therefore х(г)=0 апа х:(і):О at фе extremal points. Hence, 

if x(£)=0, the condition must be fulfilled, 
ax(t-x,) + bx(t-t,) # 0 (16) 

where  a=0F (x(£) x(t-t),x(r-v,))/0x(t~r,) and b=0F(x(2),x(t-,),x(1-t,))/0x(t-t,). The 
condition (16) can be satisfied if ¥(#-7,)#0 or/and ¥(#-t,)%0. By this 15 meant that in е 
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case of quadratic extrema derivatives Х0 N 

and x(r-t), ог x(r) and ж(г-т,) do not 0.08- 
vanish simultaneously. As the result, the й 
number оё extrema separated in time by T, 
and v, from а quadratic extremum must be — 0.04 — 
appreciably less than the number оЁ _ 
extrema separated in time by other values 0.00 
оЁ т and hence the N(v) plot will Y T T T T 
demonstrate minima аг t=r, and v=t,. But 0 100 200 300 400 т 
these minima are not so pronounced ав in — В. 6. Number N of pairs of extrema in а realization 
the case оё а single delay time, since only — оё Eq. (17) separated in time by T, ав а function оё 
опе оё the terms оЁ Eq. (16) is necessary T N(x) & normalized to @с total number о’ extrema 
not equal 10 zero. in time series. N, . (t)=N(70), N, ,(t)=N(299) 

As an example, we demonstrate the method efficiency with a generalization of the 
Mackey-Glass equation by introducing a further delay, 

(1) = -bx(t) + Uy ax(ew, (145 () + Mopax(e-ny) (14 (t-x,)) (17) 

with а=0.2, b=0.1, с=10, ,=70, апа ©,=300. The N(z) plot 15 presented in Fig. 6. The 
most pronounced minima оЁ М(х) are observed аг т=70 and т=299 providing а good 
estimation оЁ both the delay Нтеб т, and t,. 

min2’ 

Conclusion 

We have proposed the methods for reconstructing different time-delay systems 
from time series. These methods are based on the statistical analysis of time intervals 
between exirema in the time series and the projection оё the infinite-dimensional phase 
space of a time-delay system to suitably chosen low-dimensional subspaces. The methods 
allow опе 10 estimate the delay time, the parameter characterizing the inertial properties 
of the system, and the nonlinear function even in the presence of sufficiently high noise. 

The method оё the delay time definition uses only operations оё comparing and adding. It 

needs neither ordering of data, nor calculation of approximation error or certain measure 
оЁ complexity оё the trajectory and therefore it does not need significant time оЁ 

computation. The proposed techniques of the nonlinear function recovery and estimation 
of the parameter characterizing the system inertial properties use all points of the time 
series what allows one to apply the method to short time series even in the regimes of 
weakly developed chaos. 
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УДК 537.86 

ВОССТАНОВЛЕНИЕ ДИНАМИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ 
СЗАПАЗДЫВАНИЕМ ПО ВРЕМЕННЫМ РЯДАМ 

В.И. Пономаренко, М.Д. Прохоров, A.C. Kapaéaes, 
Е.П. Селезнев, Т.В. Диканев 

Работа посвящена развитию метода оценки параметров  систем с 
запаздыванием по временным рядам. Метод основан на статистическом анализе 
временных интервалов между экстремумами временного ряда и проецировании 
бесконечномерного фазового пространства системы с  запаздыванием B 
соответствующим образом выбранные подпространства малой размерности. 
Работоспособность метода продемонстрирована при реконструкции различных 
дифференциальных уравнений с запаздыванием по их хаотическим решениям. ` 
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