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EVOLUTION OF RUNNING WAVES TO SPATIO-TEMPORAL CHAOS: 
INTERACTION OF TEMPORAL AND SPATIAL DYNAMICS 
IN A RING OF PERIOD-DOUBLING SELF-OSCILLATORS 

А. Shabunin, V. Astakhov, А. Akopov 

In the work we consider transition from regular running waves to developed spatio- 

temporal chaos in а chain оё period-doubling oscillators. We investigate typical bifurcations 
which take place оп е base of the chosen running wave regime from е period-one cycle 10 
developed temporal chaos. We found that oscillations remain spatially periodic until transition 
to temporal chaos. The exact spatial periodicity is changed by the periodicity in the average in 
the chaotic region. Destroying of the averaged spatio-periodic structure is connected with 
losing оё coherence оп main frequencies 1 the temporal spectra оё neighbor oscillators 1 the 
chain. 

To V. Anishchenko, on the occasion of his sixtieth birthday 

In recent years a problems of collective dynamics of interacting oscillators attracts 
а great interests. A series оЁ works was devoted 10 consideration of coupled maps arrays 
modeling different physical phenomena [1-4]. The maps with chaotic behavior have rich 
dynamics and they allow to research formation of regular and chaotic spatio-temporal 
structures resulted from synchronization of oscillations. Another base models are arrays 
of phase oscillators which can be applied for investigation of phenomena of phase 
synchronization and of formation of phase structures. Most of studies was devoted to the 
global mean-field coupling systems [5-10]. It was demonstrated that the very simple 
periodic oscillators can demonstrate complex macroscopic behavior: periodic, quasi- 
periodic and even chaotic through quasi-periodic and period-doubling routes [6]. The 
mean-field approach allowing to consider the behavior of the system as a whole, does not 
take into account local connections between elements, which can lead to formation of 
local spatial structures. Locally coupled limit-cycle oscillators was intensively 
investigated in the works [11-13]. The phase regularities in nearest-neighbor coupled 

oscillators were also considered оп е example оё the circle maps [14]. The work [15] 

investigated spatial synchronization in the chain of unidirectionally coupled period- 

doubling self-oscillators and developing of the dynamics along the array. 
It has been known that chains оё е simplest limit-cycle oscillators with periodic 

boundary conditions exhibit running waves regimes when oscillations in nearest sites 

differ from each other on constant phase shifts. In the work [11] a more complex 
oscillators chain was considered. It was demonstrated that taking into account фе second 
harmonics in the spectrum of oscillations can lead to spatially chaotic behavior. Hence 

the transition to more realistic models lead to dynamics which can’t be realized in the 

simplest phase oscillators arrays. The works [16-19] demonstrate that running waves 

regimes are possible for rings of chaotic oscillators. Nevertheless, until now а lot оЁ 
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questions about the developing and destroying of the chaotic running waves remain 
unresolved. How does complicating of the temporal dynamics influence оп the spatial 
structures? How the destroying of spatial structures is connected with the synchronization 
between nearest-neighbor oscillators? In опг investigation we are focusing оп these 
questions. We have chosen а chain оЁ period-doubling self-oscillators (Chua's 
oscillators) with diffusion symmetric coupling 

£,= alyx-A(x)), 

3% =х- Y+ 2+ Y0+ 2, O} 

=Py, 
where 

bx+a-b ifx>1 

КХ) = 1 ах НЫ <1 

bx-a+b ifx<-1, i=1,2,....N, 

with periodic boundary conditions: 

X=X N =W Ф =y 

All oscillators are identical. The behavior of the single oscillator is widely described in 
the literature (see, for example, [20]). It is characterized by period-doubling bifurcations 
cascade and bistability, when two symmetric attractors formed near two non-trivial 
equilibria P, and P, coexist т е phase space. With parameter а increasing these 
attractors merge and а5 а result double scroll chaotic attractor appears. 

We investigated the system (1) with changing оё the parameter o ап оё coupling 
coefficient y. Other parameters were fixed in the values: a=-8/7, b=-5/7, p=-22. The 
number of oscillators in the chain was N=30 and N=1024. At the value of a is more than 
а=8.78 period-one cycle temporal regimes with different spatial structures coexist in the 
system. Choosing spatially-periodic initial values one can obtain attractors characterized 
by exact space periodicity. These attractors can be considered as running waves rotating 
along the ring with constant phase velocity because oscillations in the every site has equal 
amplitude and equal phase shift relatively to the neighbor oscillator. We investigated the 
waves with spatial periods оЁ 6, 10, 15 oscillators (for the 30-sites chain). With 
increasing оЁ the parameter o these waves undergo bifurcations which lead to 
complicating of their temporal behavior. At small coupling we observed period-doubling 
bifurcations cascades of finite length. The number of the bifurcations increases with 
decreasing of the coupling and tends to infinity at zero coupling. The every cascade is 
ended by the tori birth bifurcation which is followed by the destroying оё the torus and 
the transition to chaos. At larger coupling the period-doubling bifurcations do not take 
place and the torus appears on the base of the period-one cycle. The fig. 1 demonstrates a 
diagram оЁ typical regimes оп е plane of parameters y-a for the family оЁ regimes 
originated from е running wave with spatial period A=15. The region оё stability of this 
family is bounded by lines marked by «o» (lines 7, 5). The line 1 bounds this region from 
the right. With crossing the line the regimes with wavelength A=15 lose their stability by 
sudden way and the system transits to waves with larger spatial periods. The line 5 marks 
destroying оЁ periodic spatial structure by soft way. Near this line the spatial structure 
begins to change its form and over it the regime awfully «forgets» 5 original spatial 
structure. Over the line / and before the line 2 the stable period-one cycle is observed. On 
the line 2 the system transits to quasi-periodic behavior. This is the line of the torus 1T 
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Fig. 1. Diagram of regular апа chaotic regimes originated from the wave with spatial period A=15 (0); 
A=10 (dot lines); A=6 (dot-dashed line) 

birth. At large coupling the system evaluates on the base of this torus and demonstrates 
transition to chaos through the torus breaking (dashed line 4 in the fig.1). Over this line а 
one-band chaotic attractor exists. At small coupling №е transition to chaos occurs through 
the period-doubling bifurcations and quasi-periodic behavior originated from cycles with 
double periods. This region of smaller coupling is bounded by the line 3. In the fig. 1 we 
also built lines which bound regions of existence of regimes originated from running 
waves with spatial periods A=10 (dot lines) and A=6 (dot-dashed lines). It is seen that 
regimes with longer wavelengths occupy larger regions on the parameters plane. The 
short-lengths waves exist only at rather small coupling. The waves with minimal possible 
spatial period A=2 (n-waves) were not found in the system possibly because оЁ very 
narrow region оё existence. The bottom boundaries for regimes with different 
wavelengths coincide аг the values оё parameters о=8.78, y=0. Hence, the а! mentioned 

period-one running waves originated from the same equilibrium. The upper boundaries 
coincide at the values a=11.65, y=0 that corresponds to transition to one-band chaotic 
attractor in the uncoupled oscillator. 

All bifurcations оЁ regular regimes @0 по! change their space periodicity. 
Oscillations remain exactly spatially periodic with the same periods until the transition 10 
temporal chaos. In the chaotic region the spatial behavior changes its character. The exact 
space-periodicity destroys immediately after е transition to temporal chaos, but chaotic 
regimes preserve the space-periodicity in the average. Spatio-temporal diagrams and 
spatial spectra for these regimes are presented т the fig. 2. They are built for the one- 
band chaotic regime with averaged spatial period of A=16 for the chain of 1024 elements. 
The abscissa axis оЁ the spatio-temporal diagram denotes the sites in the chain, the 
ordinate axis denotes the Poincare section of the variable х, in the every oscillators 
observed for the long interval of time. Three parts of the figure demonstrate serial 

destroying of spatial structure with decreasing оЁ coupling: aty=0.15 (a), y=0.05 (b), апа 
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Fig. 2. Destroying of the averaged spatial structure of the wave а! a=11.78, with decrease оё coupling: 
у=0.15 (a); 0.05 @); 0.02 (c) 

v=0.02 (с). The first case corresponds 10 averaged spatial periodicity with sharp peak in 
the spatial spectrum (fig. 2, а). Then, with decreasing оё coupling the spatial diagram 
begins to lose its periodic structure that is accompany by widening of the peak in the 
spatial spectrum (fig. 2, b) and а5 а result аё small coupling е periodic spatial structure 
awfully disappears and е spectrum becomes plate (fig. 2, с). It is interesting that the 
destroying of periodic spatial structure with decreasing of coupling takes place only for 
one-band temporal chaos. If ме chose а: correspondent 10 many-band attractor regimes 
the averaged space-periodicity exists until neglect small couplings. 

The periodic spatial structure in the chain is connected with coherence оЁ 
oscillations on main peaks in the temporal spectra of neighbor oscillators. The structure is 
preserved until the coherence function on the main peaks is equal to 1. The fig. 3 
demonstrates changing in the power spectrum and in the correspondent coherent function 
for the cases described in the fig. 2. When main harmonics in the spectra are coherent the 
chaotic regime is almost spatially periodic. Decreasing of coupling leads to decreasing of 
the coherence function except main frequencies (fig. 3, b). This is accompany by gradual 
destroying of spatial periodicity. Then if the coherence for main peaks becomes smaller 
than 1 (fig. 3, с) the periodic spatial structure awfully breaks. 

Summarizing the contents оё our research we can conclude that the developing оё 
temporal dynamics in the ппр оё identical period-doubling oscillators with diffusing 
coupling does not lead to changing of spatial periodicity until the transition to temporal 
chaos. In the chaotic region exact spatial periodicity is changed by the periodicity т the 
averaged. The destroying of the averaged periodic structure takes place only for 
developed one-band chaotic attractor. It occurs both with developing of chaos and with 
decreasing of coupling coefficient and is accompanied by the loss of coherence on main 
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Fig. 3. Loss of the coherence between dynamics оЁ the neighbor oscillators а! =11.78, with е coupling 

decrease y=0.15 (a); 0.05 (b); 0.02 (c) 

peaks т the temporal spectra оЁ neighbor oscillators. The family оё regimes with 

determine spatial period exists in the limited range оё the coupling. If @е coupling is 

increased over the determine maximal values the system transits to а regime with larger 

spatial period. 
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ЭВОЛЮЦИЯ БЕГУЩИХ ВОЛН 
К ПРОСТРАНСТВЕННО-ВРЕМЕННОМУ ХАОСУ: ВЗАИМОДЕЙСТВИЕ 

ВРЕМЕННОЙ И ПРОСТРАНСТВЕННОЙ ДИНАМИКИ В КОЛЬЦЕ 
ГЕНЕРАТОРОВ С УДВОЕНИЕМ ПЕРИОДА 

А. Шабунин, В. Астахов, А. Акопов 

В данной работе рассматривается переход от регулярных бегущих волн к 
развитому пространственно-временному хаосу B цепочке  осцилляторов с 
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удвоением периода. Исследуются типичные бифуркации, которые происходят на 
основе выбранного режима бегущей волны от цикла периода один до развитого 
временного хаоса. Обнаружено, что до перехода к временному хаосу колебания 
остаются — пространственно — периодическими. В области  xaoca — точная 

пространственная - периодичность — сменяется — периодичностью в — среднем. 

Разрушение усредненной пространственно-периодичной структуры связано с 
ЦО'ГСРСЙ когерентности на основных частотах во временных спектрах соседних 

генераторов в цепочке, 
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